Резистор

Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления[1], предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.[2]. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Резисторы разных размеров, типов, мощности с проволочными выводамиФайл:DBP 1994 1732 Ohmsches Gesetz.jpg Почтовая марка Германии 1994 года

Схема замещения резистора чаще всего имеет вид параллельно соединённых сопротивления и ёмкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, ёмкость и индуктивность — паразитные параметры.

Содержание

Линейные и нелинейные резисторы

Все резисторы делятся на линейные и нелинейные.

Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.

Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.

Основные характеристики и параметры резисторов

  • Номинальное сопротивление — основной параметр.
  • Предельная рассеиваемая мощность.
  • Температурный коэффициент сопротивления.
  • Допустимое отклонение сопротивления от номинального значения (технологический разброс в процессе изготовления).
  • Предельное рабочее напряжение.
  • Избыточный шум.
  • Максимальная температура окружающей среды для номинальной мощности рассеивания.
  • Влагоустойчивость и термостойкость.
  • Коэффициент напряжения. Учитывает явление зависимости сопротивления некоторых видов резисторов от приложенного напряжения.

Определяется по формуле: KU=R1−R2R1∗100%{displaystyle K_{U}={frac {R_{1}-R_{2}}{R_{1}}}*100%}

 , где R1{displaystyle R_{1}}  и R2{displaystyle R_{2}}  — сопротивления, измеренные при напряжениях, соответствующих 10%{displaystyle 10%} -ной и 100%{displaystyle 100%} -ной номинальной мощности рассеяния резистора.[3]

Некоторые характеристики существенны при проектировании устройств, работающих на высоких и сверхвысоких частотах, это:

  • Паразитная ёмкость.
  • Паразитная индуктивность.

Обозначение резисторов на схемах

  а) обозначение, принятое в России и в Европе
б) принятое в США

По стандартам России условные графические обозначения резисторов на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним, постоянные резисторы обозначаются следующим образом:

Обозначение
по ГОСТ 2.728-74
Описание
2cm  Постоянный резистор без указания номинальной мощности рассеивания
2cm  Постоянный резистор номинальной мощностью рассеивания 0,05 Вт
2cm  Постоянный резистор номинальной мощностью рассеивания 0,125 Вт
2cm  Постоянный резистор номинальной мощностью рассеивания 0,25 Вт
2cm  Постоянный резистор номинальной мощностью рассеивания 0,5 Вт
2cm  Постоянный резистор номинальной мощностью рассеивания 1 Вт
2cm  Постоянный резистор номинальной мощностью рассеивания 2 Вт
2cm  Постоянный резистор номинальной мощностью рассеивания 5 Вт

Переменные, подстроечные и нелинейные резисторы обозначаются следующим образом:

Обозначение
по ГОСТ 2.728-74
Описание
Variable resistor GOST.svg  Переменный резистор (реостат).
Variable resistor as rheostat symbol GOST.svg  Переменный резистор, включённый как реостат (ползунок соединён с одним из крайних выводов).
Trimmer resistor symbol GOST.svg  Подстроечный резистор.
Trimmer resistor as rheostat symbol GOST.svg  Подстроечный резистор, включённый как реостат (ползунок соединён с одним из крайних выводов).
Varistor Symbol.svg  Варистор (сопротивление зависит от приложенного напряжения).
Resistor 2.svg  Термистор (сопротивление зависит от температуры).
Light-dependent resistor schematic symbol.svg  Фоторезистор (сопротивление зависит от освещённости).

Цепи, состоящие из резисторов

Основная статья: Последовательное и параллельное соединение

Последовательное соединение резисторов

При последовательном соединении резисторов их сопротивления складываются

SeriesR.png 

R=R1+R2+R3+…{displaystyle R=R_{1}+R_{2}+R_{3}+ldots }

 Доказательство

Так как общая разность потенциалов равна сумме её составляющих: U=U1+U2+U3+…{displaystyle U=U_{1}+U_{2}+U_{3}+ldots }

 

А из закона Ома падение напряжения Ui{displaystyle U_{i}}

  на каждом сопротивлении Ri{displaystyle R_{i}}  равно: Ui=IiRi{displaystyle U_{i}=I_{i}R_{i}} 

при этом из закона сохранения заряда, через все резисторы идёт одинаковый ток I{displaystyle I}

 , поэтому подставляя в формулу для суммы напряжений закон Ома, записываем: IR=IR1+IR2+IR3+…{displaystyle IR=IR_{1}+IR_{2}+IR_{3}+ldots } 

Делим всё на ток I{displaystyle I}

  и получаем: R=R1+R2+R3+…{displaystyle R=R_{1}+R_{2}+R_{3}+ldots } 

Если R1=R2=R3=…=Rn{displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}

 , то общее сопротивление равно: R=nR1{displaystyle R=nR_{1}} 

При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.

Параллельное соединение резисторов

При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость 1R{displaystyle {frac {1}{R}}}

  складывается из проводимостей каждого резистора 1Ri{displaystyle {frac {1}{R_{i}}}} )

ParallelR.png 1R=1R1+1R2+1R3+…{displaystyle {frac {1}{R}}={frac {1}{R_{1}}}+{frac {1}{R_{2}}}+{frac {1}{R_{3}}}+ldots } 

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.

Доказательство

Так как заряд при разветвлении тока сохраняется, то: I=I1+I2+I3+…{displaystyle I=I_{1}+I_{2}+I_{3}+ldots }

 

Из закона Ома ток Ii{displaystyle I_{i}}

  через каждый резистор равен: Ii=UiRi{displaystyle I_{i}={frac {U_{i}}{R_{i}}}} , но разность потенциалов на всех резисторах будет одинакова, поэтому перепишем уравнение суммы токов: UR=UR1+UR2+UR3+…{displaystyle {frac {U}{R}}={frac {U}{R_{1}}}+{frac {U}{R_{2}}}+{frac {U}{R_{3}}}+ldots } 

Делим всё на U{displaystyle U}

  и получаем общую проводимость 1R=1R1+1R2+1R3+…{displaystyle {frac {1}{R}}={frac {1}{R_{1}}}+{frac {1}{R_{2}}}+{frac {1}{R_{3}}}+ldots } , и общее сопротивление R=11R1+1R2+1R3+…{displaystyle R={frac {1}{{frac {1}{R_{1}}}+{frac {1}{R_{2}}}+{frac {1}{R_{3}}}+ldots }}} 

Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{displaystyle R={frac {R_{1}R_{2}}{R_{1}+R_{2}}}}

 .

Если R1=R2=R3=…=Rn{displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}

 , то общее сопротивление равно: R=R1n{displaystyle R={frac {R_{1}}{n}}} 

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Смешанное соединение резисторов

ParalseriesR.png 

Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов R1{displaystyle R_{1}}

  и R2{displaystyle R_{2}} , общим сопротивлением R1+R2{displaystyle R_{1}+R_{2}} , другой из резистора R3{displaystyle R_{3}} , общая проводимость будет равна 1R=1(R1+R2)+1R3{displaystyle {frac {1}{R}}={frac {1}{(R_{1}+R_{2})}}+{frac {1}{R_{3}}}} , то есть общее сопротивление R=R3(R1+R2)R1+R2+R3{displaystyle R={frac {R_{3}(R_{1}+R_{2})}{R_{1}+R_{2}+R_{3}}}} .

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

Мощность резисторов

Как при параллельном, так и при последовательном соединении резисторов итоговая мощность будет равна сумме мощностей соединяемых резисторов.

PR=PR1+PR2+⋯+PRn{displaystyle P_{R}=P_{R1}+P_{R2}+cdots +P_{Rn}}

 

Делитель напряжения

Основная статья: Делитель напряжения  Делитель напряжения.

Резистивный делитель напряжения можно представить как два последовательных резистора, называемые плечами, сумма напряжений на которых равна входному напряжению. Плечо между нулевым потенциалом и средней точкой называют нижним: с него обычно снимается выходное напряжение делителя.

UWY=UWER1(R+R1){displaystyle U_{WY}=U_{WE}{frac {R_{1}}{(R+R_{1})}}}

 , где R1(R+R1){displaystyle {frac {R_{1}}{(R+R_{1})}}} — коэффициент передачи .

Если R = 9R1, то UWY = 0,1UWE, (коэффициент передачи a=0.1{displaystyle a=0.1}

 ,то есть произойдёт деление входного напряжения в 10 раз).

Классификация резисторов

  Три резистора разных номиналов для поверхностного монтажа (SMD), припаянные на печатную плату

Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления[4].

По назначению:

  • резисторы общего назначения;
  • резисторы специального назначения:
    • высокоомные (сопротивления от десятка МОм до единиц ТОм, рабочие напряжения 100—400 В);
    • высоковольтные (рабочие напряжения — десятки кВ);
    • высокочастотные (имеют малые собственные индуктивности и ёмкости, рабочие частоты до сотен МГц);
    • прецизионные и сверхпрецизионные (повышенная точность, допуск 0,001 — 1 %).

По характеру изменения сопротивления:

  Постоянные резисторы (для навесного монтажа).   Переменный резистор.   Подстроечные резисторы.   Прецизионный многооборотный подстроечный резистор.

По способу защиты от влаги:

  • незащищённые;
  • лакированные;
  • компаундированные;
  • впрессованные в пластмассу;
  • герметизированные;
  • вакуумные.

По способу монтажа:

По виду вольт-амперной характеристики:

  • линейные резисторы;
  • нелинейные резисторы:
    • варисторы — сопротивление зависит от приложенного напряжения;
    • терморезисторы — сопротивление зависит от температуры;
    • фоторезисторы — сопротивление зависит от освещённости;
    • тензорезисторы — сопротивление зависит от деформации резистора;
    • магниторезисторы — сопротивление зависит от величины магнитного поля.
    • мемристоры (разрабатываются) — сопротивление зависит от протекавшего через него заряда (интеграла тока за время работы).

По виду используемых проводящих элементов[5]:

  Проволочный резистор с отводом.   Плёночный угольный резистор (часть защитного покрытия удалена для демонстрации токопроводного слоя).
  • Проволочные резисторы. Наматываются из проволоки или ленты с высоким удельным сопротивлением на какой-либо каркас. Обычно имеют значительную паразитную индуктивность. Для снижения паразитной индуктивности почти всегда выполняются с бифилярной намоткой. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода. Иные типы резисторов называются непроволочными резисторами.
  • Непроволочные резисторы. Резистивный элемент представляет собой объёмную структуру физического тела или поверхностного слоя, образованного на изоляционных деталях (тонкую плёнку металлического сплава или композитного материала с высоким удельным сопротивлением, низким коэффициентом термического сопротивления, обычно нанесённую на цилиндрический керамический сердечник). Концы сердечника снабжены напрессованными металлическими колпачками с проволочными выводами для монтажа. Иногда, для повышения сопротивления, в плёнке исполняется винтовая канавка для формирования спиральной конфигурации проводящего слоя. Сейчас это наиболее распространённый тип резисторов для монтажа в отверстия печатных плат. По такому же принципу выполнены резисторы в составе гибридной интегральной микросхемы: в виде металлических или композитных плёнок, нанесённых на обычно керамическую подложку методом напыления в вакууме или трафаретной печати.

По виду применяемых материалов:

  • Углеродистые резисторы. Изготавливаются в виде плёночных и объёмных. Плёнки или резистивные тела представляют собой смеси графита с органическими или неорганическими веществами.
  • Металлопленочные или металлоокисные резисторы. В качестве резистивного материала используется тонкая металлическая лента.
  • Композиционные резисторы.
  • Проволочные резисторы.
  • Интегральный резистор. Резистивный элемент — слаболегированный полупроводник, формируемый в кристалле микросхемы в виде обычно зигзагообразного канала, изолированного от других цепей микросхемы p-n переходом. Такие резисторы имеют большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных монокристаллических микросхем, где применить другие типы резисторов принципиально невозможно.

Резисторы общего и специального назначения

  Переменный резистор с сервоприводом и резисторы с мощностью рассеивания 25 и 10 Вт

Промышленностью выпускаются резисторы общего и специального назначения. Резисторы общего назначения используют в качестве анодных нагрузок радиоламп и делителей в цепях питания, элементов фильтров, регуляторов громкости и тембра, в цепях формирования импульсов, в измерительных приборах невысокой точности. В эту группу входят постоянные резисторы, сопротивление которых фиксируется при изготовлении, и переменные, сопротивление которых можно плавно менять в определенных пределах. Сопротивление резисторов общего назначения лежит в пределах от 10 Ом до 10 Мом, а номинальная мощность рассеивания — от 0,125 до 100 Вт.

К резисторам специального назначения, обладающим рядом специфических свойств и параметров, относят высокоомные, высоковольтные, высокочастотные, прецизионные, полупрецизионные.

  • Высокоомные резисторы выполняют преимущественно композиционного типа с сопротивлением до 1013 Ом и используют в устройствах для измерения малых токов. Номинальная мощность рассеивания их обычно не указывается, а рабочие напряжения составляют 100-300 В.
  • Высоковольтные резисторы с сопротивлением до 1011 Ом, но большей мощности и более крупные по размерам, чем высокоомные, используют для делителей напряжения, эквивалентов антенн, искрогашения, разряда конденсаторов фильтров. Наиболее распространенные их типы имеют рабочие напряжения в диапазоне 10-35 кВ.
  • Высокочастотные резисторы предназначены для схем, работающих на частотах свыше 10 МГц, используются в качестве согласующих нагрузок, аттенюаторов, эквивалентов антенн, элементов волноводов и обладают малой собственной ёмкостью и индуктивностью. При искусственном охлаждении их номинальные мощности составляют 5, 20, 50 кВт.
  • Прецизионные и полупрецизионные резисторы, применяемые в точных измерительных устройствах, вычислительных машинах, релейных системах, магазинах сопротивлений отличаются высокой точностью изготовления, имеют повышенную стабильность основных параметров и часто выполняются герметизированными. Номинальные сопротивления их от 1 Ом до 1 МОм, а номинальные мощности рассеивания не более 2 Вт.[6]

Резисторы, выпускаемые промышленностью

  Многовыводные резисторы

Выпускаемые промышленностью резисторы одного и того же номинала имеют разброс сопротивлений. Значение возможного разброса определяется точностью резистора. Выпускают резисторы с точностью 20%, 10%, 5%, и т. д. вплоть до 0,01%[7]. Номиналы резисторов не произвольны: их значения выбираются из специальных номинальных рядов, наиболее часто из номинальных рядов E6 (20%), E12 (10%) или E24 (для резисторов с точностью до 5%), для более точных резисторов используются более точные ряды (например E48).

Резисторы, выпускаемые промышленностью, характеризуются также определённым значением максимальной рассеиваемой мощности (выпускаются резисторы мощностью 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт) (согласно ГОСТ 24013-80 и ГОСТ 10318-80 советской радиотехнической промышленностью выпускались резисторы следующих номиналов мощностей, в Ваттах:0,01, 0,025, 0,05, 0,062, 0,125, 0,5, 1, 2, 3, 4, 5, 8, 10, 16, 25, 40, 63, 100, 160, 250, 500)
[8]

Маркировка резисторов с проволочными выводами

  Резистор-перемычка   Преци-зионный резистор   Резистор типа MLT   Рассеивающие резисторы   Резистор типа NTC

  Варианты цветовой маркировки с 4 и 5 полосками

Резисторы, в особенности малой мощности — мелкие детали, резистор мощностью 0,125 Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали номинал с десятичной запятой трудно, поэтому при указании номинала вместо десятичной точки пишут букву, соответствующую единицам измерения (К — для килоомов; М — для мегаомов; E, R или без указания единиц — для единиц Ом). Кроме того, любой номинал отображается максимум тремя символами. Например, 4K7 обозначает резистор сопротивлением 4,7 кОм, 1R0 — 1 Ом, М12 — 120 кОм (0,12 МОм) и т. д. Однако в таком виде наносить номиналы на маленькие резисторы сложно, и для них применяют маркировку цветными полосами.

Для резисторов с точностью 20% используют маркировку с тремя полосками, для резисторов с точностью 10% и 5% — маркировку с четырьмя полосками, для более точных резисторов — с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая — десятичный множитель, пятая — точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (доля отказов в процентах на 1000 часов работы).

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10%) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвёртая — точность, а пятая — температурный коэффициент.

  Шесть резисторов разных номиналов и точности  Металлоплёночный резистор маркированный 6 цветными полосками

Цветовая кодировка резисторов
Цвет как число как десятичный множитель как точность в % как ТКС в ppm/°C как % отказов
серебристый 1·10−2 = «0,01» 10
золотой 1·10−1 = «0,1» 5
чёрный 0 1·100 = 1
коричневый 1 1·101 = «10» 1 100 1 %
красный 2 1·10² = «100» 2 50 0,1 %
оранжевый 3 1·10³ = «1000» 15 0,01 %
жёлтый 4 1·104 = «10 000» 25 0,001 %
зелёный 5 1·105 = «100 000» 0,5
синий 6 1·106 = «1 000 000» 0,25 10
фиолетовый 7 1·107 = «10 000 000» 0,1 5
серый 8 1·108 = «100 000 000» 0,05
белый 9 1·109 = «1 000 000 000» 1
отсутствует 20 %
Пример
Допустим, на резисторе имеются четыре полосы: коричневая, чёрная, красная и золотая. Первые две полоски дают 1 0, третья 100, четвёртая даёт точность 5 %, итого — резистор сопротивлением 10·100 Ом = 1 кОм, с точностью ±5 %.
  Металло-плёночный резистор   Углеродистый плёночный резистор   Устройство объёмного углеродистого резистора   Устройство плёночного углеродистого резистора

Запомнить цветную кодировку резисторов нетрудно: после чёрной 0 и коричневой 1 идёт последовательность цветов радуги. Так как маркировка была придумана в англоязычных странах, голубой и синий цвета не различаются.

Также для облегчения запоминания можно воспользоваться мнемоническим правилом: «ЧастоКаждый Красный Охотник Желает Знать, Сколько Фазанов Село в Болоте».

Для облегчения различные разработчики программного обеспечения создают программы, которые определяют сопротивление резистора.

Поскольку резистор — симметричная деталь, может возникнуть вопрос: «Начиная с какой стороны читать полоски?» Для четырёхполосной маркировки обычных резисторов с точностью 5 и 10% вопрос решается просто: золотая или серебряная полоска всегда стоит в конце. Для трёхполосочного кода первая полоска стоит ближе к краю резистора, чем последняя. Для других вариантов важно, чтобы получалось значение сопротивления из номинального ряда, если не получается, нужно читать наоборот (для резисторов МЛТ-0,125 производства СССР с 4 полосками первой является полоска, нанесённая ближе к краю; обычно она находится на металлическом стаканчике вывода, а остальные три — на более узком керамическом теле резистора).В резисторах Panasonic с пятью полосами резистор располагается так, чтобы отдельно стоящая полоска была справа, при этом первые 2 полоски определяют первые два знака, третья полоса — степень множителя, четвёртая полоса — допуск, пятая полоса — область применения резистора.Особый случай использования цветовой маркировки резисторов — перемычки нулевого сопротивления. Они обозначаются одной чёрной (0) полоской по центру (использование таких резистороподобных перемычек вместо дешёвых кусков проволоки объясняется желанием производителей сократить расходы на перенастройку сборочных автоматов).

Маркировка SMD-резисторов

  SMD резистор-перемычка   SMD резистор 10 кОм, 1%   SMD резистор 4,7 кОм   SMD резистор 390 Ом

  Устройство SMD резистора

«Резисторы» нулевого сопротивления (перемычки на плате) кодируются одной цифрой «0» или тремя («000»). Иногда нули имеют прямоугольную форму.

Кодирование 3 или 4 цифрами

  • ABC обозначает AB•10C Ом
например 102 — это 10•10² Ом = 1 кОм
например 1002 — это 100•10² Ом = 10 кОм

1кОм=1000Ом

Кодирование цифра-цифра-буква (JIS-C-5201)

Ряд E96, точность 1 %.

Мантисса m значения сопротивления кодируется 2 цифрами(см. таблицу), степень при 10 кодируется буквой.

Примеры: 09R = 12,1 Ом; 80E = 6,65 МОм; все 1 %.

  • S или Y = 10−2
  • R или X = 10−1
  • A = 100 = 1
  • B = 101
  • C = 10²
  • D = 10³
  • E = 104
  • F = 105
код m код m код m код m код m код m
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
10 124 26 182 42 267 58 392 74 576 90 845
11 127 27 187 43 274 59 402 75 590 91 866
12 130 28 191 44 280 60 412 76 604 92 887
13 133 29 196 45 287 61 422 77 619 93 909
14 137 30 200 46 294 62 432 78 634 94 931
15 140 31 205 47 301 63 442 79 649 95 953
16 143 32 210 48 309 64 453 80 665 96 976

Кодирование буква-цифра-цифра

Ряды E24 и E12, точность 2 %, 5 % и 10 %.(Ряд E48 не используется).

Степень при 10 кодируется буквой (так же, как для 1%-х сопротивлений,см. список выше),мантисса m значения сопротивления и точность кодируются 2 цифрами(см. таблицу).

Примеры:

  • 2 %, 1,00 Ом = S01
  • 5 %, 1,00 Ом = S25
  • 5 %, 510 Ом = A42
  • 10 %, 1,00 Ом = S49
  • 10 %, 820 кОм = D60
2 % 5 % 10 %
код m код m код m
01 100 25 100 49 100
02 110 26 110 50 120
03 120 27 120 51 150
04 130 28 130 52 180
05 150 29 150 53 220
06 160 30 160 54 270
07 180 31 180 55 330
08 200 32 200 56 390
09 220 33 220 57 470
10 240 34 240 58 560
11 270 35 270 59 680
12 300 36 300 60 820
13 330 37 330
14 360 38 360
15 390 39 390
16 430 40 430
17 470 41 470
18 510 42 510
19 560 43 560
20 620 44 620
21 680 45 680
22 750 46 750
23 820 47 820
24 910 48 910

Некоторые дополнительные свойства резисторов

Зависимость сопротивления от температуры

  Лабораторный резистор

Сопротивление металлических и проволочных резисторов немного зависит от температуры. При этом зависимость сопротивления от температуры практически линейная R=R0(1+α(t−t0)){displaystyle R=R_{0}(1+alpha (t-t_{0}))}

 . Коэффициент α{displaystyle alpha }  называют температурным коэффициентом сопротивления. Такая зависимость сопротивления от температуры позволяет использовать резисторы в качестве термометров. Сопротивление полупроводниковых резисторов (терморезистров) может зависеть от температуры сильнее, возможно, даже экспоненциально по закону Аррениуса, однако в практическом диапазоне температур и эту экспоненциальную зависимость можно заменить линейной.

Шум резисторов

При температуре выше абсолютного нуля даже идеальный резистор является источником шума. Это следует из фундаментальной флуктуационно-диссипационной теоремы (в применении к электрическим цепям это утверждение известно также как теорема Найквиста). При частоте, существенно меньшей чем kTh{displaystyle k{frac {T}{h}}}

  (где k{displaystyle k}  — постоянная Больцмана, T{displaystyle T}  — абсолютная температура резистора в кельвинах, h{displaystyle h}  — постоянная Планка) спектр теплового шума равномерный («белый шум»), спектральная плотность шума (преобразование Фурье от коррелятора напряжений шума) |U|ω2=4RkT{displaystyle |U|_{omega }^{2}=4RkT} , где Uω2=∫dt⟨U(t)U(0)⟩eiωt{displaystyle U_{omega }^{2}=int dtlangle U(t)U(0)rangle e^{iomega t}} . Видно, что чем больше сопротивление, тем больше эффективное напряжение шума, также, эффективное напряжение шума пропорционально корню из температуры.

Даже при абсолютном нуле температур у резисторов, составленных из квантовых точечных контактов, будет иметься шум, обусловленный Ферми-статистикой. Устраним путём последовательного и параллельного включения нескольких контактов.

Уровень шума реальных резисторов выше. В шуме реальных резисторов также всегда присутствует компонент, интенсивность которого пропорциональна обратной частоте, то есть 1/f-шум или «розовый шум». Этот шум возникает из-за множества причин, одна из главных — перезарядка ионов примесей, на которых локализованы электроны.

Шумы резисторов возникают за счёт прохождения в них тока. В переменных резисторах имеются так называемые «механические» шумы, возникающие при работе подвижных контактов.

Неисправности резисторов

  Пробитый резистор

Основным критерием работоспособности постоянных резисторов считают стабильность их сопротивления. Для переменных резисторов более важным критерием работоспособности является сохранение нормальной регулировочной функции. Допустимые критические изменения сопротивления зависят от вида и назначения аппаратуры, а также места резисторов в схеме.

Причина отказов и их характер связаны с конструктивными особенностями резисторов и специфичны для каждого типа. Наиболее характерными причинами отказов из-за неправильного применения резисторов являются:

См. также

Примечания

  1. Отсюда возникает разговорное наименование резистора — сопротивление.
  2. ГОСТ Р 52002-2003
  3. В. Г. Гусев, Ю. М. Гусев Электроника — М.: Высшая школа, 1991. — С. 12. — ISBN 5-06-000681-6.
  4. Аксёнов А. И., Нефедов А. В. Элементы схем бытовой радиоаппаратуры. Конденсаторы. Резисторы. — C. 126
  5. Тищенко О. Ф., Киселёв Л. Т., Коваленко А. П. Элементы приборных устройств. Часть 1. Детали, соединения и передачи. — М., Высшая школа, 1982. — с. 260
  6. Белевцев А.Т. Монтаж радиоаппаратуры и приборов / канд. техн. наук А.М. Бонч-Бруевич. — 2-е изд. — М.: Высшая школа, 1982. — С. 55-64. — 255 с.
  7. ITC-Electronics — Прецизионные резисторы SMR1DZ и SMR3DZ  (неопр.). Дата обращения: 11 ноября 2008. Архивировано из оригинала 13 сентября 2014 года.
  8. А. А. Бокуняев, Н. М, Борисов, Р. Г. Варламов и др. Справочная книга радиолюбителя-конструктора.-М. Радио и связь 1990—624 с.: ISBN 5-256-00658-4
  9. Белевцев А.Т. Монтаж радиоаппаратуры и приборов / канд. техн. наук А.М. Бонч-Бруевич. — 2-е изд.. — М.: Высшая школа, 1982. — С. 60-61. — 255 с.

Литература

  • Резисторы (справочник) / под ред. И. И. Четверткова — М.: Энергоиздат, 1991
  • Аксенов А. И., Нефедов А. В. Элементы схем бытовой радиоаппаратуры. Конденсаторы. Резисторы: Справочник. — М.: Радио и связь, 1995. — 272 с. — (Массовая радиобиблиотека; Вып. 1203).
  • Справочник по элементам радиоэлектронных устройств / под ред. В. Н. Дулина, М. С. Жука — М.: Энергия, 1978

Ссылки