Эту страницу предлагается переименовать в «Градус, минута, секунда».Пояснение причин и обсуждение — на странице Википедия:К переименованию/17 июля 2017. Пожалуйста, основывайте свои аргументы на правилах именования статей. Не удаляйте шаблон до подведения итога обсуждения.Переименовать в предложенное название, снять этот шаблон. |
У этого термина существуют и другие значения, см. Градус.
Гра́дус, мину́та, секу́нда — общепринятые единицы измерения плоских углов. Также эти величины используются в картографии для определения координат произвольной точки земной поверхности, а также для определения азимута.
Содержание
Градус
Окружность с хордой, образованной стороной равностороннего треугольника (выделена красным). Одна шестидесятая этой дуги равна одному градусу. Шесть таких хорд образуют полный круг.
Градус (от лат. gradus — деление шкалы, шаг, ступень) обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.
Причина выбора градуса, как единицы измерения вращения и углов, не известна. Одна из теорий предполагает, что это связано с тем, что 360 — приблизительное количество дней в году[1]. Некоторые древние календари, такие как древнеперсидский, использовали год в 360 дней.
Другая теория гласит, что аккадцы (вавилоняне) поделили окружность, используя угол равностороннего треугольника как базу и поделив результат на 60, следуя своей шестидесятеричной системе счисления[2][3].
Если построить окружность радиусом 57 см, то 1 градус будет примерно соответствовать 1 см длины дуги данной окружности.
Градус в альтернативных единицах измерения:
- 1∘=2π360∘=π180∘{displaystyle 1^{circ }={frac {2pi }{displaystyle {360^{circ }}}}={frac {pi }{displaystyle {180^{circ }}}}} радиан =1∘p∘≈1∘57,295779513∘{displaystyle ={frac {1^{circ }}{displaystyle {p^{circ }}}}approx {frac {1^{circ }}{displaystyle {57{,}295779513^{circ }}}}} [4]≈0,0174532925{displaystyle approx 0,0174532925} (радиан в 1°)
- 1∘=1360{displaystyle 1^{circ }={frac {1}{360}}} оборота = 0,002(7) оборота = 0,002777777777…
- 1∘=400360{displaystyle 1^{circ }={frac {400}{360}}} градов = 1,(1) градов = 1,11111111111… градов
Минуты и секунды
Основная статья: Минута дуги
По аналогии с делением часа как интервала времени градус делят на 60 минут (от лат. minutus — маленький, мелкий; обозначается знаком x′), а минуту — на 60 секунд (от лат. secunda divisio — второе деление; обозначается знаком y″. Ранее употреблялась величина в 1/60 секунды — терция (третье деление), с обозначением в три штриха — z″′. Деление градуса на минуты и секунды ввёл Клавдий Птолемей[5]; корни же такого деления восходят к учёным Древнего Вавилона (где использовалась шестидесятеричная система счисления).
Минуты и секунды в других системах измерения:
- 1′=2π360∘⋅60′=1′p′≈1′3437,747′{displaystyle 1’={frac {2pi }{displaystyle {360^{circ }}cdot 60′}}={frac {1′}{p’}}approx {frac {1′}{3437{,}747′}}} [4]≈2,90888208⋅10−4 rad{displaystyle approx 2,90888208cdot 10^{-4}~rad} (1 минута в радианах)
- 1″=2π360∘⋅60′⋅60″=1″p″≈1″206264,8″{displaystyle 1»={frac {2pi }{displaystyle {360^{circ }}cdot 60’cdot 60»}}={frac {1»}{p»}}approx {frac {1»}{206264{,}8»}}} [4]≈4,848136811⋅10−6 rad{displaystyle approx 4,848136811cdot 10^{-6}~rad} (1 секунда в радианах).
Минуты и секунды в радианной мере из-за своих чрезмерно малых величин представляют ограниченный интерес и практически очень мало используются.
Гораздо больший интерес представляет перевод десятичных (сотых, десятитысячных) долей градуса в минуты и секунды и обратно — см. Радиан#Связь радиана с другими единицами и Географические координаты.
Угловая секунда
Одна угловая секунда примерно соответствует углу, под которым виден футбольный мяч с расстояния около 45 километров.
Углова́я секу́нда (англ. arcsecond, arc second, as, second of arc; синонимы: дуговая секунда, секунда дуги[6]) — внесистемная астрономическая единица измерения малых углов, тождественная секунде плоского угла[7].
Использование
Угловая секунда (обозначается ″) используется в астрономии при измерении плоских углов в градусных мерах. При измерении углов в часовых мерах (в частности, для определения прямого восхождения) используется единица измерения «секунда» (обозначается s). Соотношение между этими величинами определяется формулой 1s = 15″.[8]
Иногда угловую секунду (и производные от неё дольные единицы) ошибочно называют арксекундой[6][9], что является простой транслитерацией с англ. arcsecond.
Дольные единицы
По аналогии с международной системой единиц (СИ), наряду с угловой секундой применяются и её дольные единицы измерения: миллисекунды (англ. milliarcseconds, mas), микросекунды (англ. microarcseconds, µas) и пикосекунды (англ. picoarcseconds, pas). Они не входят в СИ (СИ рекомендует миллирадианы и микрорадианы), но допускаются к применению[7].Однако, согласно ГОСТ 8.417-2002, наименование и обозначения единиц плоского угла (градус, минута, секунда) не допускается применять с приставками[10], в связи с чем такие дольные величины должны приводиться либо к единицам СИ (миллирадианам и т. п.), либо к угловым секундам, либо обозначаться исходными единицами (mas, µas и pas соответственно).
единица | величина | обозначение | аббревиатура | радиан (прибл.) |
---|---|---|---|---|
градус | 1/360 окружности | ° | deg | 17,4532925 mrad |
минута | 1/60 градуса | ′ | arcmin, amin, ′^{displaystyle {hat {‘}}} , MOA | 290,8882087 µrad |
секунда | 1/60 минуты | ″ | arcsec | 4,8481368 µrad |
миллисекунда | 1/1000 секунды | mas | 4,8481368 nrad | |
микросекунда | 1 × 10−6 секунды | μas | 4,8481368 prad |
Дольные единицы могут использоваться для обозначения собственного движения звёзд и галактик, годичного параллакса и углового диаметра звёзд[11].
Для наблюдения астрономических объектов под такими сверхмалыми углами астрономы прибегают к методу интерферометрии, при котором сигналы, принимаемые несколькими разнесёнными радиотелескопами, комбинируются в процессе апертурного синтеза. Так, используя методику интерферометрии со сверхдлинной базой, астрономы получили возможность измерить собственное движение галактики Треугольника.[источник не указан 3917 дней]
В видимом свете существенно труднее достичь миллисекундного разрешения.
Тем не менее, спутник Hipparcos справился с этой задачей в процессе астрометрических измерений, по результатам которых были составлены наиболее точные (по состоянию на 1997 год) каталоги звёзд Tycho (TYC) и Hipparcos (HIP)[12][13].
Примечания
- ↑ Degree, MathWorld
- ↑ James Hopwood Jeans. The Growth of Physical Science. — 1947. — P. 7.
- ↑ Murnaghan, Francis D. Analytic geometry. — New York: Prentice-Hall, inc., 1946. — P. 2.
- ↑ 1 2 3 Переводные множители — <57,295779513>, <3437,747>, <206264,8> — см. Радиан#Связь радиана с другими единицами.
- ↑ Боголюбов, 1983, с. 393—394.
- ↑ 1 2 Англо-русско-английский астрономический словарь (неопр.). Astronet. Дата обращения: 23 декабря 2007. Архивировано 23 августа 2011 года.
- ↑ 1 2 Non-SI units accepted for use with the International System of Units (англ.). SI brochure (8th ed.). Bureau International des Poids et Mesures. — Описание СИ на сайте Международного бюро мер и весов. Дата обращения: 23 декабря 2007. Архивировано 23 августа 2011 года.
- ↑ Справочник. Некоторые внесистемные единицы (неопр.). ASTROLAB. Дата обращения: 23 декабря 2007. Архивировано 23 августа 2011 года.
- ↑ Glossary entry for English term «arcsecond» (англ.). Справочник по услугам профессионального перевода, предоставляемым независимыми переводчиками и бюро перевода. ProZ.com. Дата обращения: 23 декабря 2007. Архивировано 23 августа 2011 года.
- ↑ ГОСТ 8.417-2002. Единицы величин. Введён в действие с 1 сентября 2003 г. // Информационная система по оборудованию «Прибор.Инфо» : справочник. — 2003.
- ↑ Источник: статья Minute of arc в en-wiki.
- ↑ Гурьянов С. Почему звезды называются именно так? (неопр.) проект «Астрогалактика» (29 октября 2005). Дата обращения: 26 декабря 2007. Архивировано 23 августа 2011 года.
- ↑ Цветков А. С. Общие сведения о проекте Hipparcos // Руководство по практической работе с каталогом Hipparcos. — СПб.: АИ СПбГУ.
Литература
- Боголюбов А. Н. Математики. Механики. Биографический справочник. — Киев: Наукова думка, 1983. — 639 с.
- Гельфанд И. М., Львовский С. М., Тоом А. Л. Малые углы // Тригонометрия. — М.: МЦНМО, 2002. — 199 с. — ISBN 5-94057-050-X.