Запрос «БД» перенаправляется сюда; см. также другие значения.
Ба́за да́нных — представленная в объективной форме совокупность самостоятельных материалов (статей, расчётов, нормативных актов, судебных решений и иных подобных материалов), систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ)[1].
Схема базы данных движка Mediawiki
Многие специалисты указывают на распространённую ошибку, состоящую в некорректном использовании термина «база данных» вместо термина «система управления базами данных», и указывают на необходимость различения этих понятий[2].
Содержание
- 1 Проблемы определения
- 2 История
- 3 Виды баз данных
- 4 Сверхбольшие базы данных
- 5 См. также
- 6 Примечания
- 7 Литература
- 8 Ссылки
Проблемы определения
В литературе предлагается множество определений понятия «база данных», отражающих скорее субъективное мнение тех или иных авторов, однако общепризнанная единая формулировка отсутствует.
Определения из международных и национальных стандартов, разработанных на основе международных:
- База данных — совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных.[3][4][5]
- База данных — совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, которая поддерживает одну или более областей применения[6].
Определения из авторитетных монографий:
- База данных — организованная в соответствии с определёнными правилами и поддерживаемая в памяти компьютера совокупность данных, характеризующая актуальное состояние некоторой предметной области и используемая для удовлетворения информационных потребностей пользователей[7].
- База данных — некоторый набор перманентных (постоянно хранимых) данных, используемых прикладными программными системами какого-либо предприятия[8].
- База данных — совместно используемый набор логически связанных данных (и описание этих данных), предназначенный для удовлетворения информационных потребностей организации[9].
В определениях наиболее часто (явно или неявно) присутствуют следующие отличительные признаки[10]:
- БД хранится и обрабатывается в вычислительной системе.
Таким образом, любые внекомпьютерные хранилища информации (архивы, библиотеки, картотеки и т. п.) базами данных не являются. - Данные в БД логически структурированы (систематизированы) с целью обеспечения возможности их эффективного поиска и обработки в вычислительной системе.
Структурированность подразумевает явное выделение составных частей (элементов), связей между ними, а также типизацию элементов и связей, при которой с типом элемента (связи) соотносится определённая семантика и допустимые операции[11]. - БД включает схему, или метаданные, описывающие логическую структуру БД в формальном виде (в соответствии с некоторой метамоделью).
В соответствии с ГОСТ Р ИСО МЭК ТО 10032-2007, «постоянные данные в среде базы данных включают в себя схему и базу данных. Схема включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных. База данных включает в себя набор постоянных данных, определённых с помощью схемы. Система управления данными использует определения данных в схеме для обеспечения доступа и управления доступом к данным в базе данных»[3].
Из перечисленных признаков только первый является строгим, а другие допускают различные трактовки и различные степени оценки. Можно лишь установить некоторую степень соответствия требованиям к БД.
В такой ситуации не последнюю роль играет общепринятая практика. В соответствии с ней, например, не называют базами данных файловые архивы, Интернет-порталы или электронные таблицы, несмотря на то, что они в некоторой степени обладают признаками БД. Принято считать, что эта степень в большинстве случаев недостаточна (хотя могут быть исключения).
История
История возникновения и развития технологий баз данных может рассматриваться как в широком, так и в узком аспекте.
В широком смысле понятие истории баз данных обобщается до истории любых средств, с помощью которых человечество хранило и обрабатывало данные. В таком контексте упоминаются, например, средства учёта царской казны и налогов в древнем Шумере (4000 г. до н. э.)[12], узелковая письменность инков — кипу, клинописи, содержащие документы Ассирийского царства и т. п. Следует помнить, что недостатком этого подхода является размывание понятия «база данных» и фактическое его слияние с понятиями «архив» и даже «письменность».
История баз данных в узком смысле рассматривает базы данных в традиционном (современном) понимании. Эта история начинается с 1955 года, когда появилось программируемое оборудование обработки записей. Программное обеспечение этого времени поддерживало модель обработки записей на основе файлов. Для хранения данных использовались перфокарты[12].
Оперативные сетевые базы данных появились в середине 1960-х. Операции над оперативными базами данных обрабатывались в интерактивном режиме с помощью терминалов. Простые индексно-последовательные организации записей быстро развились к более мощной модели записей, ориентированной на наборы. За руководство работой Data Base Task Group (DBTG), разработавшей стандартный язык описания данных и манипулирования данными, Чарльз Бахман получил Тьюринговскую премию.
В это же время в сообществе баз данных Кобол была проработана концепция схем баз данных и концепция независимости данных.
Следующий важный этап связан с появлением в начале 1970-х реляционной модели данных, благодаря работам Эдгара Кодда.Работы Кодда открыли путь к тесной связи прикладной технологии баз данных с математикой и логикой. За свой вклад в теорию и практику Эдгар Ф. Кодд также получил премию Тьюринга.
Сам термин база данных (англ. database) появился в начале 1960-х годов, и был введён в употребление на симпозиумах, организованных компанией SDC в 1964 и 1965 годах, хотя понимался сначала в довольно узком смысле, в контексте систем искусственного интеллекта. В широкое употребление в современном понимании термин вошёл лишь в 1970-е годы[13].
Виды баз данных
Существует огромное количество разновидностей баз данных, отличающихся по различным критериям. Например, в «Энциклопедии технологий баз данных»[7], по материалам которой написан данный раздел, определяются свыше 50 видов БД.
Основные классификации приведены ниже.
Классификация по модели данных
Примеры:
- Иерархическая
- Объектная или объектно-ориентированная
- Объектно-реляционная
- Реляционная
- Сетевая
- Функциональная.
Классификация по среде постоянного хранения
- Во вторичной памяти, или традиционная (англ. conventional database): средой постоянного хранения является периферийная энергонезависимая память (вторичная память) — как правило жёсткий диск.
В оперативную память СУБД помещает лишь кэш и данные для текущей обработки. - В оперативной памяти (англ. in-memory database, memory-resident database, main memory database): все данные на стадии исполнения находятся в оперативной памяти.
- В третичной памяти (англ. tertiary database): средой постоянного хранения является отсоединяемое от сервера устройство массового хранения (третичная память), как правило на основе магнитных лент или оптических дисков.
Во вторичной памяти сервера хранится лишь каталог данных третичной памяти, файловый кэш и данные для текущей обработки; загрузка же самих данных требует специальной процедуры.
Классификация по содержимому
Примеры:
- Географическая
- Историческая
- Научная
- Мультимедийная
- Клиентская.
Классификация по степени распределённости
- Централизованная, или сосредоточенная (англ. centralized database): БД, полностью поддерживаемая на одном компьютере.
- Распределённая БД (англ. distributed database) — составные части которой размещаются в различных узлах компьютерной сети в соответствии с каким-либо критерием.
- Неоднородная (англ. heterogeneous distributed database): фрагменты распределённой БД в разных узлах сети поддерживаются средствами более одной СУБД.
- Однородная (англ. homogeneous distributed database): фрагменты распределённой БД в разных узлах сети поддерживаются средствами одной и той же СУБД.
- Фрагментированная, или секционированная (англ. partitioned database): методом распределения данных является фрагментирование (партиционирование, секционирование), вертикальное или горизонтальное.
- Тиражированная (англ. replicated database): методом распределения данных является тиражирование (репликация).
Другие виды БД
- Пространственная (англ. spatial database): БД, в которой поддерживаются пространственные свойства сущностей предметной области. Такие БД широко используются в геоинформационных системах.
- Временная, или темпоральная (англ. temporal database): БД, в которой поддерживается какой-либо аспект времени, не считая времени, определяемого пользователем.
- Пространственно-временная (англ. spatial-temporal database) БД: БД, в которой одновременно поддерживается одно или более измерений в аспектах как пространства, так и времени.
- Циклическая (англ. round-robin database): БД, объём хранимых данных которой не меняется со временем, поскольку в процессе сохранения новых данных они заменяют более старые данные. Одни и те же ячейки для данных используются циклически.
Сверхбольшие базы данных
Сверхбольшая база данных (англ. Very Large Database, VLDB) — это база данных, которая занимает чрезвычайно большой объём на устройстве физического хранения. Термин подразумевает максимально возможные объёмы БД, которые определяются последними достижениями в технологиях физического хранения данных и в технологиях программного оперирования данными.
Количественное определение понятия «чрезвычайно большой объём» меняется во времени. Так, в 1997 году самой большой в мире была текстовая база данных Knight Ridder’s DIALOG объёмом 7 терабайт[14]. В 2001 году самой большой считалась база данных объёмом 10,5 терабайт, в 2003 году — объёмом 25 терабайт[15]. В 2005 году самыми крупными в мире считались базы данных с объёмом хранилища порядка сотни терабайт[16]. В 2006 году поисковая машина Google использовала базу данных объёмом 850 терабайт[17].
К 2010 году считалось, что объём сверхбольшой базы данных должен измеряться по меньшей мере петабайтами[16].
В 2011 году компания Facebook хранила данные в кластере из 2 тысяч узлов суммарной ёмкостью 21 петабайт[18]; к концу 2012 года объём данных Facebook достиг 100 петабайт[19], а в 2014 году — 300 петабайт[20].
К 2014 году по косвенным оценкам компания Google хранила на своих серверах до 10—15 эксабайт данных в совокупности[21].
По некоторым оценкам, к 2025 году генетики будут располагать данными о геномах от 100 миллионов до 2 миллиардов человек, и для хранения подобного объёма данных потребуется от 2 до 40 эксабайт[22].
В целом, по оценкам компании IDC, суммарный объём данных «цифровой вселенной» удваивается каждые два года и изменится от 4,4 зеттабайта в 2013 году до 44 зеттабайт в 2020 году[23].
Исследования в области хранения и обработки сверхбольших баз данных VLDB всегда находятся на острие теории и практики баз данных. В частности, с 1975 года проходит ежегодная конференция International Conference on Very Large Data Bases («Международная конференция по сверхбольшим базам данных»). Большинство исследований проводится под эгидой некоммерческой организации VLDB Endowment (Фонд целевого капитала «VLDB»), которая обеспечивает продвижение научных работ и обмен информацией в области сверхбольших БД и смежных областях.
См. также
- Архитектура ANSI — SPARC
- База знаний
- Большие данные
- Информационная система
- Модель данных
- Проектирование баз данных
- Хранилище данных
- База данных заднего плана
- Шифрование базы данных
Примечания
- ↑ Гражданский кодекс РФ, ст. 1260
- ↑ «Следует отметить, что термин база данных часто используется даже тогда, когда на самом деле подразумевается СУБД. […]Такое обращение с терминами предосудительно». — К. Дж. Дейт. Введение в системы баз данных. — 8-е изд. — М.: «Вильямс», 2006, стр. 50.
«Этот термин (база данных) часто ошибочно используется вместо термина ‘система управления базами данных’». — Когаловский М. Р. Энциклопедия технологий баз данных. — М.: Финансы и статистика, 2002., стр. 460.
«Среди непрофессионалов […] путаница возникает при использовании терминов „база данных“ и „система управления базами данных“. […] Мы будем строго разделять эти термины». —Кузнецов С. Д. Основы баз данных: учебное пособие. — 2-е издание, испр. — М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2007, стр. 19. - ↑ 1 2 ГОСТ Р ИСО МЭК ТО 10032-2007: Эталонная модель управления данными (идентичен ISO/IEC TR 10032:2003 Information technology — Reference model of data management)
- ↑ ГОСТ 33707-2016 (ISO/IEC 2382:2015) Информационные технологии (ИТ). Словарь
- ↑ ISO/IEC TR 10032:2003 — Information technology — Reference Model of Data Management (англ.). www.iso.org. Дата обращения: 9 июля 2018.
- ↑ ISO/IEC 2382:2015 — Information technology — Vocabulary (англ.). www.iso.org. Дата обращения: 9 июля 2018.
- ↑ 1 2 Когаловский М. Р., 2002.
- ↑ Дейт К. Дж., 2005.
- ↑ Коннолли Т., Бегг К., 2003.
- ↑ Мирошниченко Е. А. К формальному определению понятия «база данных» // Пробл. информатики. 2011. № 2. С. 83-87.
- ↑ Важно понимать, что структурированность базы данных оценивается не на уровне физического хранения (на котором все данные представлены совокупностями битов или байтов), а на уровне некоторой логической модели данных.
- ↑ 1 2 Грей, Дж. Управление данными: прошлое, настоящее и будущее
- ↑ Haigh T. How Data Got its Base: Information Storage Software in the 1950s and 1960s // IEEE Annals of the History of Computing. — 2009. — #4 October-December
- ↑ Very Large Database
- ↑ Riedewald M., Agrawal D., Abbadi A. Dynamic Multidimensional Data Cubes for Interactive Analysis of Massive Datasets // In: Encyclopedia of Information Science and Technology, First Edition, Idea Group Inc., 2005. ISBN 9781591405535
- ↑ 1 2 «Экстремальные» базы данных: Самые большие и самые быстрые, 2010 г.
- ↑ Alex Chitu. How Much Data Does Google Store?, 2006
- ↑ Shvachko, Konstantin. Apache Hadoop. The Scalability Update (англ.). — 2011. — Vol. 36, no. 3. — P. 7—13. — ISSN 1044-6397.
- ↑ Josh Constine. How Big Is Facebook’s Data? // TechCrunch, 23.08.2012
- ↑ Wiener, J., Bronson N. Facebook’s Top Open Data Problems, 22.10.2014
- ↑ Colin Carson. How Much Data Does Google Store? Архивная копия от 15 сентября 2016 на Wayback Machine, 2014
- ↑ Ася Горина. Увеличивающийся объем генетических данных стал проблемой для науки
- ↑ Executive Summary: Data Growth, Business Opportunities, and the IT Imperatives
Литература
- Когаловский М. Р. Энциклопедия технологий баз данных. — М.: Финансы и статистика, 2002. — 800 с. — ISBN 5-279-02276-4.
- Кузнецов С. Д. Основы баз данных. — 2-е изд. — М.: Интернет-университет информационных технологий; БИНОМ. Лаборатория знаний, 2007. — 484 с. — ISBN 978-5-94774-736-2.
- Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. — 8-е изд. — М.: Вильямс, 2005. — 1328 с. — ISBN 5-8459-0788-8 (рус.) 0-321-19784-4 (англ.).
- Коннолли Т., Бегг К. Базы данных. Проектирование, реализация и сопровождение. Теория и практика = Database Systems: A Practical Approach to Design, Implementation, and Management. — 3-е изд. — М.: Вильямс, 2003. — 1436 с. — ISBN 0-201-70857-4.
- Гарсиа-Молина Г., Ульман Дж., Уидом Дж. Системы баз данных. Полный курс = Database Systems: The Complete Book. — Вильямс, 2003. — 1088 с. — ISBN 5-8459-0384-X.
- Date, C. J. Date on Database: Writings 2000–2006. — Apress, 2006. — 566 с. — ISBN 978-1-59059-746-0, 1-59059-746-X.
- Date, C. J. Database in Depth. — O’Reilly, 2005. — 240 с. — ISBN 0-596-10012-4.
- Beynon-Davies P. (2004). Database Systems 3rd Edition. Palgrave, Basingstoke, UK. ISBN 1-4039-1601-2
Ссылки
- CITForum — материалы на сайте Центра информационных технологий
- Very Large Data Base — Endowment Inc.
- ACM SIGMOD — Association for Computing Machinery: Special Interest Group On Management of Data.