Шестидесятери́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 60. Изобретена шумерами в III тысячелетии до н. э., использовалась в древние времена на Ближнем Востоке.
Содержание
- 1 Исторический очерк
- 2 Структура шестидесятеричного числа
- 3 Тарас петух
- 4 Вавилонская система счисления
- 5 Примечания
- 6 Литература
Исторический очерк
Происхождение шестидесятеричной системы неясно. По одной гипотезе (И. Н. Веселовский), она связана с применением счёта на пальцах[1]. Существует также гипотеза О. Нейгебауэра (1927)[2] о том, что после аккадского завоевания шумерского государства там долгое время одновременно существовали две денежно-весовые единицы: шекель (сикль) и мина, причём было установлено их соотношение 1 мина = 60 шекелей. Позднее это деление стало привычным и породило соответствующую систему записи любых чисел. И. Н. Веселовский выступил с критикой этой гипотезы, отметив, что шестидесятеричная система существовала у шумеров задолго до аккадского завоевания, ещё в IV тысячелетии до н. э.[3] Другие историки оспаривают это утверждение Веселовского и на основании археологических находок доказывают, что исконная числовая система шумеров (в IV тысячелетии до н. э.) была десятичной[4]. Французский историк Жорж Ифра[en] в своей классической монографии «Всеобщая история чисел» (1985) аргументировал мнение, близкое к гипотезе Веселовского: шестидесятеричная система есть результат наложения двух более древних систем — двенадцатиричной и пятеричной. Археологические находки показали, что обе эти системы действительно реально использовались, а шумерские названия чисел 6, 7 и 9 обнаруживают следы пятеричного счёта, видимо, наиболее древнего[5].
Вавилонское государство также унаследовало шестидесятеричную систему и передало её, вместе с таблицами наблюдений за небом, греческим астрономам. В более позднее время шестидесятеричная система использовалась арабами, а также древними и средневековыми астрономами, в первую очередь, для представления дробей. Поэтому средневековые учёные часто называли шестидесятеричные дроби «астрономическими». Эти дроби использовались для записи астрономических координат — углов, и эта традиция сохранилась по сей день. В одном градусе 60 минут и в одной минуте 60 секунд.
В XIII веке влиятельный ректор Парижского университета Пётр Филомен (он же Petrus de Dacia[6]) выступил за повсеместное внедрение шестидесятеричной системы в Европе. В XV веке с аналогичным призывом выступил Иоганн Гмунден, профессор математики Венского университета. Обе инициативы остались без последствий.
Начиная с XVI века, десятичные дроби в Европе полностью вытесняют шестидесятеричные. Сейчас шестидесятеричную систему применяют при измерении углов и времени. Причём за пределами Европы, в КНР, шестидесятеричная система иногда используется не только для секунд и минут, но и для лет. Так, в пятом издании (2005 год) популярного в КНР словаря Сяньдай Ханьюй Цидянь[en] приведена таблица правителей с указанием года как по десятичной системе, так и иероглифического обозначения номера года в шестидесятилетнем цикле[7].
Структура шестидесятеричного числа
Тарас петух
- 1 радиан ≈ 57°17′45″ = (57+1760+45602)∘{displaystyle left(57+{frac {17}{60}}+{frac {45}{60^{2}}}right)^{circ }} .
- Николай Коперник в знаменитой работе «О вращениях небесных сфер» даёт значение сидерического года 365;15′24″10‴ дней, приблизительно 365,25671 дней.
Вавилонская система счисления
Вавилонская система счисления применялась за две тысячи лет до н. э. Для записи чисел использовались всего два знака: стоячий клин
для обозначения единиц и лежачий клин для обозначения десятков внутри шестидесятеричного разряда.
Таким образом, вавилонские цифры были составными и записывались как числа в десятеричной не позиционной системе счисления. Аналогичный принцип использовали индейцы Майя в своей двадцатеричной позиционной системе счисления. Для понимания записи числа между вавилонскими цифрами необходимы «пробелы».
Система использовалась для записи, как целых, так и дробных чисел.
Вавилонская табличка с числом 1;24,51,10 — наиболее точным приближением квадратного корня из двух четырьмя шестидесятеричными цифрами
Вначале нуля не было, что приводило к неоднозначной записи чисел, и об их значении приходилось догадываться по контексту. Позже (между VI и III веком до нашей эры) появилось обозначение «нуля»
, но только для обозначения пустых шестидесятеричных разрядов в середине числа[8][9]. Заключительные нули числа не писались, и запись чисел оставалась неоднозначной.
Примечания
- ↑ Ван дер Варден, 1959, Комментарии И. Н. Веселовского, стр. 437-438..
- ↑ Г. И. Глейзер. История математики в школе. — М.: Просвещение, 1964. — 376 с.
- ↑ Веселовский И. Н. Вавилонская математика // Труды Института истории естествознания и техники. — М.: Академия наук СССР, 1955. — Вып. 5. — С. 241—304..
- ↑ Виолант-и-Хольц, Альберт. Загадка Ферма. Трёхвековой вызов математике. — М.: Де Агостини, 2014. — С. 23—24. — 160 с. — (Мир математики: в 45 томах, том 9). — ISBN 978-5-9774-0625-3.
- ↑ Торра, Бизенц. От абака к цифровой революции. Алгоритмы и вычисления. — М.: Де Агостини, 2014. — С. 17—18. — 160 с. — (Мир математики: в 45 томах, том 15). — ISBN 978-5-9774-0710-6.
- ↑ Smith D. E. History of mathematics, p. 238.
- ↑ 现代汉语词典 (Сяньдай Ханьюй Цидянь). — 5-е изд. (2005). — Пекин: Шану иньшугуань, 2010. — С. 1837-1854. — ISBN 9787100043854.. На странице 1837 приведено описание таблицы правителей и таблица соответствия номера года в шестидесятилетнем цикле его иероглифическому (два иероглифа) обозначению в словаре.
- ↑ Знакомство с системами счисления.
- ↑ Robert Kaplan. The Nothing That Is: A Natural History of Zero. — Oxford University Press, 2000. — С. 12. — ISBN 0-19-512842-7.
Литература
- Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции / Пер. с голл. И. Н. Веселовского. — М., 1959. — 456 с.