Деся
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
5 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
8 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
9 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
10 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Содержание
- 1 Таблица умножения в десятичной системе
- 2 История
- 3 Наименование степеней десяти
- 4 Применение
- 5 См. также
- 6 Ссылки
Таблица умножения в десятичной системе
× | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
3 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
4 | 0 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
5 | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
6 | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
7 | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
8 | 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
9 | 0 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
10 | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
История
Десятичная непозиционная система счисления с единичным кодированием десятичных цифр (от 1 до 1 000 000) возникла во второй половине третьего тысячелетия до н. э. в Древнем Египте (египетская система счисления).
В другой великой цивилизации — вавилонской с её шестидесятеричной системой — за две тысячи лет до н. э. внутри шестидесятеричных разрядов использовалась позиционная десятичная система счисления с единичным кодированием десятичных цифр[
1]. Египетская десятичная система повлияла на аналогичную систему в первых европейских системах письма, таких как критские иероглифы, линейное письмо А и линейное письмо Б.
Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.
Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной.А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось иное название — «арабская» (арабские цифры).
Кипу инков
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[2], так и не числовых записей в двоичной системе кодирования[3].В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[4].Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта, как двойная запись[5].
Наименование степеней десяти
В стандартной десятичной системе счисления для именования больших чисел используются именные названия степеней тысячи, такие как миллион (1 000 000) и миллиард (1 000 000 000). Промежуточные степени десяти образуются прибавлением слов десять или сто, например десять миллионов (10 000 000) и сто миллиардов (100 000 000 000); другие промежуточные количества образуются прибавлением к именным названиям степеней тысячи числительных до тысячи, например сто двадцать семь миллионов (127 000 000). Для биллиона и следующих числительных есть два возможных значения: в короткой шкале каждая очередная именованная единица содержит 1000 предыдущих, а в длинной — миллион; так, биллион, следующий за миллионом, может означать как 109, так и 1012.
Степени десяти в Индии
В Индии используется альтернативный способ именованию степеней десяти, основанный на устаревшей ведической системе счисления с основанием 100, согласно которой собственные названия имеют 103, 105 и следующие степени десяти через один, а промежуточные образуются прибавлением числительного десять. Система была официально утверждена в 1987 году и исправлена в 2002 году[6].
Число | Ведическая | Индийская | Стандартная |
---|---|---|---|
103 | хазар | хазар | тысяча |
104 | десять хазар | десять хазаров | десять тысяч |
105 | лакх | лакх | сто тысяч |
106 | ниют | десять лакхов | миллион |
107 | крор | крор | десять миллионов |
108 | рибурдх | десять кроров | сто миллионов |
109 | вранд | араб | миллиард |
1010 | кхараб | десять арабов | десять миллиардов |
1011 | ни-кхараб | кхараб | сто миллиардов |
1012 | шанкх | десять кхарабов | триллион/биллион |
При записи чисел в индийской системе разделители размещаются в соответствии с этими наименованиями степеней: например, число, записываемое в стандартной системе как 50 801 592, в индийской будет иметь вид будет 5 08 01 592[7]. Названия лакх и крор используются в индийском диалекте английского языка (lakh, crore), хинди (लाख lākh, करोड़ karod) и других языках Южной Азии.
Применение
См. также
- Приставки СИ — десятичные приставки.
- Именные названия степеней тысячи
- Декатрон
Ссылки
- ↑ Знакомство с системами счисления (неопр.). Дата обращения: 8 ноября 2009. Архивировано из оригинала 1 июня 2017 года.
- ↑ Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3.
- ↑ Experts ‘decipher’ Inca strings (неопр.). Архивировано 18 августа 2011 года.
- ↑ Carlos Radicati di Primeglio, Gary Urton. Estudios sobre los quipus. — стр.49 (неопр.).
- ↑ Dale Buckmaster. The Incan Quipu and the Jacobsen Hypothesis (англ.) // Journal of Accounting Research (англ.) (рус. : journal. — 1974. — Vol. 12, no. 1. — P. 178—181.
- ↑ S. V. Gupta. Units of Measurement: Past, Present and Future. International System of Units. — Springer Science & Business Media, 2009. — С. 12—13. — 158 с.
- ↑ Knowing our Numbers (неопр.). Department Of School Education And Literacy. National Repository of Open Educational Resources. Дата обращения: 13 февраля 2016.