Дифференциа́льное уравне́ние — уравнение, в которое входят производные функции, и может входить сама функция, независимая переменная и параметры. Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или могут отсутствовать вовсе, кроме хотя бы одной производной. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, f′(x)=f(f(x)){displaystyle f'(x)=f(f(x))} не является дифференциальным уравнением[1].
Визуализация воздушного потока, рассчитанная решением уравнения Навье-Стокса Визуализация теплообмена в корпусе насоса, созданная путём решения уравнения теплопроводности График некоторых частных интегралов дифференциального уравнения
В отличие от алгебраических уравнений, в результате решения которых ищется число (несколько чисел), при решении дифференциальных уравнений ищется функция (семейство функций).
Дифференциальное уравнение порядка выше первого можно преобразовать в систему уравнений первого порядка, в которой число уравнений равно порядку исходного дифференциального уравнения.
Современные быстродействующие ЭВМ эффективно дают численное решение обыкновенных дифференциальных уравнений, не требуя получения его решения в аналитическом виде. Это позволило некоторым исследователям утверждать, что решение задачи получено, если её удалось свести к решению обыкновенного дифференциального уравнения.
Содержание
- 1 Терминология и классификация
- 2 История
- 3 Обыкновенные дифференциальные уравнения
- 4 Простейшие дифференциальные уравнения первого порядка
- 5 Дифференциальные уравнения в частных производных
- 6 Линейные и нелинейные дифференциальные уравнения
- 7 Примеры
- 8 Важнейшие дифференциальные уравнения
- 9 См. также
- 10 Примечания
- 11 Литература
- 12 Ссылки
Терминология и классификация
Порядок дифференциального уравнения — наивысший порядок производных, входящих в него.
Если дифференциальное уравнение является многочленом относительно старшей производной, то степень этого многочлена называется степенью дифференциального уравнения. Так, например, уравнение (y″)4+y′+y6+x7=0{displaystyle (y»)^{4}+y’+y^{6}+x^{7}=0}
является уравнением второго порядка, четвёртой степени[2].
Решением (интегралом) дифференциального уравнения порядка n называется функция y(x), имеющая на некотором интервале (a, b) производные y′(x),y″(x),…,y(n)(x){displaystyle y'(x),y»(x),…,y^{(n)}(x)}
до порядка n включительно и удовлетворяющая этому уравнению. Процесс решения дифференциального уравнения называется интегрированием. Задача об интегрировании дифференциального уравнения считается решённой, если нахождение неизвестной функции y(x){displaystyle y(x)} удается привести к квадратуре, (т.е. к виду y=∫f(x) dx{displaystyle y=int f(x) dx} , где f(x){displaystyle f(x)} — элементарная функция) независимо от того, выражается ли полученный интеграл в конечном виде через известные функции или нет.
Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.
В зависимости от комбинаций производных, функций, независимых переменных дифференциальные уравнения подразделяются на линейные и нелинейные, с постоянными или переменными коэффициентами, однородные или неоднородные. В связи с важностью приложений в отдельный класс выделены квазилинейные (линейные относительно старших производных) дифференциальные уравнения в частных производных[3].
Важнейшим вопросом для дифференциальных уравнений является существование и единственность их решения. Разрешение этого вопроса дают теоремы существования и единственности, указывающие необходимые и достаточные для этого условия. Для обыкновенных дифференциальных уравнений такие условия были сформулированы Липшицем (1864). Для уравнений в частных производных соответствующая теорема была доказана С. В. Ковалевской (1874).
Решения дифференциальных уравнений подразделяются на общие и частные решения. Общие решения включают в себя неопределенные постоянные, а для уравнений в частных производных — произвольные функции от независимых переменных, которые могут быть уточнены из дополнительных условий интегрирования (начальных условий для обыкновенных дифференциальных уравнений, начальных и граничных условий для уравнений в частных производных). После определения вида указанных постоянных и неопределенных функций решения становятся частными.
Поиск решений обыкновенных дифференциальных уравнений привёл к установлению класса специальных функций — часто встречающихся в приложениях функций, не выражающихся через известные элементарные функции. Их свойства были подробно изучены, составлены таблицы значений, определены взаимные связи и т. д.
Развитие теории дифференциальных уравнений позволило в ряде случаев отказаться от требования непрерывности исследуемых функций и ввести обобщённые решения дифференциальных уравнений.
История
Исаак Ньютон Готфрид Лейбниц Леонард Эйлер Жозеф-Луи Лагранж Пьер-Симон Лаплас Жозеф Лиувилль Анри Пуанкаре Софья Ковалевская
Первоначально дифференциальные уравнения возникли из задач механики, в которых требовалось определить координаты тел, их скорости и ускорения, рассматриваемые как функции времени при различных воздействиях. К дифференциальным уравнениям приводили также некоторые рассмотренные в то время геометрические задачи.
Основой теории дифференциальных уравнений стало дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Сам термин «дифференциальное уравнение» был предложен в 1676 году Лейбницем.
Из огромного числа работ XVIII века по дифференциальным уравнениям выделяются работы Эйлера (1707—1783) и Лагранжа (1736—1813). В этих работах была прежде развита теория малых колебаний, а следовательно — теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n-мерном случае). Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777—1855) развивают также методы теории возмущений.
Когда была доказана неразрешимость алгебраических уравнений в радикалах, Жозеф Лиувилль (1809—1882) построил аналогичную теорию для дифференциальных уравнений, установив невозможность решения ряда уравнений (в частности таких классических, как линейные уравнения второго порядка) в элементарных функциях и квадратуре. Позже Софус Ли (1842—1899), анализируя вопрос об интегрировании уравнений в квадратурах, пришёл к необходимости подробно исследовать группы диффеоморфизмов (получившие впоследствии имя групп Ли) — так по теории дифференциальных уравнений возникла одна из самых плодотворных областей современной математики, дальнейшее развитие которой было тесно связано совсем с другими вопросами (алгебры Ли ещё раньше рассматривали Симеон-Дени Пуассон (1781—1840) и, особенно, Карл Густав Якоб Якоби (1804—1851)).
Новый этап развития теории дифференциальных уравнений начинается с работ Анри Пуанкаре (1854—1912), созданная им «качественная теория дифференциальных уравнений» вместе с теорией функций комплексных переменных легла в основу современной топологии. Качественная теория дифференциальных уравнений, или, как теперь её чаще называют, теория динамических систем, сейчас активно развивается и имеет важные применения в естествознании.
Обыкновенные дифференциальные уравнения
Основная статья: Обыкновенное дифференциальное уравнение
Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения, зависящие от одной независимой переменной; они имеют вид
- F(x,y,y′,y″,…,y(n))=0{displaystyle Fleft(x,y,y’,y»,…,y^{(n)}right)=0} или F(x,y,dydx,d2ydx2,…,dnydxn)=0,{displaystyle Fleft(x,y,{frac {mathrm {d} y}{mathrm {d} x}},{frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}},…,{frac {mathrm {d} ^{n}y}{mathrm {d} x^{n}}}right)=0,}
где y=y(x){displaystyle y=y(x)}
— неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от независимой переменной x,{displaystyle x,} штрих означает дифференцирование по x.{displaystyle x.} Число n{displaystyle n} называется порядком дифференциального уравнения. Наиболее практически важными являются дифференциальные уравнения первого и второго порядка.
Простейшие дифференциальные уравнения первого порядка
Основная статья: Простейшие дифференциальные уравнения первого порядка
Простейшие дифференциальные уравнения первого порядка — класс дифференциальных уравнений первого порядка, наиболее легко поддающихся решению и исследованию. К нему относятся уравнения в полных дифференциалах, уравнения с разделяющимися переменными, однородные уравнения первого порядка и линейные уравнения первого порядка. Все эти уравнения можно проинтегрировать в конечном виде.
Отправной точкой изложения будет служить дифференциальное уравнение первого порядка, записанное в т. н. симметричной форме:
P(t,x)dt+Q(t,x)dx=0(1),{displaystyle {begin{matrix}P(t,x)dt+Q(t,x)dx=0end{matrix}}qquad (1),}
где функции P(t,x){displaystyle P(t,x)}
и Q(t,x){displaystyle Q(t,x)} определены и непрерывны в некоторой области Ω⊆Rt,x2{displaystyle Omega subseteq mathbb {R} _{t,x}^{2}} .
Дифференциальные уравнения в частных производных
Основная статья: Дифференциальное уравнение в частных производных
Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:
- F(x1,x2,…,xm,z,∂z∂x1,∂z∂x2,…,∂z∂xm,∂2z∂x12,∂2z∂x1∂x2,∂2z∂x22,…,∂nz∂xmn)=0,{displaystyle Fleft(x_{1},x_{2},dots ,x_{m},z,{frac {partial z}{partial x_{1}}},{frac {partial z}{partial x_{2}}},dots ,{frac {partial z}{partial x_{m}}},{frac {partial ^{2}z}{partial x_{1}^{2}}},{frac {partial ^{2}z}{partial x_{1}partial x_{2}}},{frac {partial ^{2}z}{partial x_{2}^{2}}},dots ,{frac {partial ^{n}z}{partial x_{m}^{n}}}right)=0,}
где x1,x2,…,xm{displaystyle x_{1},x_{2},dots ,x_{m}}
— независимые переменные, а z=z(x1,x2,…,xm){displaystyle z!=z(x_{1},x_{2},dots ,x_{m})} — функция этих переменных. Порядок уравнений в частных производных может определяется так же, как для обыкновенных дифференциальных уравнений. Ещё одной важной классификацией уравнений в частных производных является их разделение на уравнения эллиптического, параболического и гиперболического типа, в особенности для уравнений второго порядка.
Линейные и нелинейные дифференциальные уравнения
Основная статья: Линейное дифференциальное уравнение
Как обыкновенные дифференциальные уравнения, так и уравнения в частных производных можно разделить на линейные и нелинейные. Дифференциальное уравнение является линейным, если неизвестная функция и её производные входят в уравнение только в первой степени (и не перемножаются друг с другом). Для таких уравнений решения образуют аффинное подпространство пространства функций. Теория линейных ДУ развита значительно глубже, чем теория нелинейных уравнений. Общий вид линейного дифференциального уравнения n-го порядка:
- pn(x)y(n)(x)+pn−1(x)y(n−1)(x)+⋯+p0(x)y(x)=r(x),{displaystyle p_{n}(x)y^{(n)}(x)+p_{n-1}(x)y^{(n-1)}(x)+cdots +p_{0}(x)y(x)=r(x),}
где pi(x) — известные функции независимой переменной, называемые коэффициентами уравнения. Функция r(x) в правой части называется свободным членом (единственное слагаемое, не зависящее от неизвестной функции). Важным частным классом линейных уравнений являются линейные дифференциальные уравнения с постоянными коэффициентами.
Подклассом линейных уравнений являются однородные дифференциальные уравнения — уравнения, которые не содержат свободного члена: r(x) = 0. Для однородных дифференциальных уравнений выполняется принцип суперпозиции: линейная комбинация частных решений такого уравнения также будет его решением. Все остальные линейные дифференциальные уравнения называются неоднородными дифференциальными уравнениями.
Нелинейные дифференциальные уравнения в общем случае не имеют разработанных методов решения, кроме некоторых частных классов. В некоторых случаях (с применением тех или иных приближений) они могут быть сведены к линейным. Например, линейное уравнение гармонического осциллятора d2ydx2+ω2y=0{displaystyle {frac {d^{2}y}{dx^{2}}}+omega ^{2}y=0}
может рассматриваться как приближение нелинейного уравнения математического маятника d2ydx2+ω2siny=0{displaystyle {frac {d^{2}y}{dx^{2}}}+omega ^{2}sin y=0} для случая малых амплитуд, когда y ≈ sin y.
Примеры
- y″+9y=0{displaystyle y»+9y=0} — однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решением является семейство функций y=(C1cos3x+C2sin3x){displaystyle y=(C_{1}cos 3x+C_{2}sin 3x)} , где C1{displaystyle C_{1}} и C2{displaystyle C_{2}} — произвольные константы, которые для конкретного решения определяются из задаваемых отдельно начальных условий. Это уравнение, в частности, описывает движение гармонического осциллятора с циклической частотой 3.
- Второй закон Ньютона можно записать в форме дифференциального уравнения md2xdt2=F(x,t),{displaystyle m{frac {d^{2}x}{dt^{2}}}=F(x,t),} где m — масса тела, x — его координата, F(x, t) — сила, действующая на тело с координатой x в момент времени t. Его решением является траектория движения тела под действием указанной силы.
- Дифференциальное уравнение Бесселя — обыкновенное линейное однородное уравнение второго порядка с переменными коэффициентами: x2d2ydx2+xdydx+(x2−α2)y=0.{displaystyle x^{2}{frac {d^{2}y}{dx^{2}}}+x{frac {dy}{dx}}+(x^{2}-alpha ^{2})y=0.} Его решениями являются так называемые цилиндрические функции — функции Бесселя, Неймана, Ганкеля.
- Пример неоднородного нелинейного обыкновенного дифференциального уравнения 1-го порядка: dudx=u2+1.{displaystyle {frac {du}{dx}}=u^{2}+1.}
В следующей группе примеров неизвестная функция u зависит от двух переменных x и t или x и y.
- Однородное линейное дифференциальное уравнение в частных производных первого порядка:
- ∂u∂t+t∂u∂x=0.{displaystyle {frac {partial u}{partial t}}+t{frac {partial u}{partial x}}=0.}
- Одномерное волновое уравнение — однородное линейное уравнение в частных производных гиперболического типа второго порядка с постоянными коэффициентами, описывает колебание струны, если u=u(x,t){displaystyle u=u(x,t)} — отклонение струны в точке с координатой x в момент времени t, а параметр a задаёт свойства струны:
- ∂2u∂t2=a2∂2u∂x2.{displaystyle {frac {partial {}^{2}u}{partial t^{2}}}=a^{2}{frac {partial ^{2}u}{partial x^{2}}}.}
- Уравнение Лапласа в двумерном пространстве — однородное линейное дифференциальное уравнение в частных производных второго порядка эллиптического типа с постоянными коэффициентами, возникающее во многих физических задачах механики, теплопроводности, электростатики, гидравлики:
- ∂2u∂x2+∂2u∂y2=0.{displaystyle {frac {partial ^{2}u}{partial x^{2}}}+{frac {partial ^{2}u}{partial y^{2}}}=0.}
- Уравнение Кортевега — де Фриза, нелинейное дифференциальное уравнение в частных производных третьего порядка, описывающее стационарные нелинейные волны, в том числе солитоны:
- ∂u∂t=6u∂u∂x−∂3u∂x3.{displaystyle {frac {partial u}{partial t}}=6u{frac {partial u}{partial x}}-{frac {partial ^{3}u}{partial x^{3}}}.}
Важнейшие дифференциальные уравнения
Обыкновенные дифференциальные уравнения
- Уравнения в полных дифференциалах
- Второй закон Ньютона (классическая механика)
- Закон радиоактивного распада (ядерная физика)
- Уравнение Ван дер Поля (теория колебаний)
Уравнения в частных производных
- Уравнение Эйлера — Лагранжа (классическая лагранжева механика)
- Уравнения Гамильтона (классическая гамильтонова механика)
- Волновое уравнение
- Уравнения Максвелла (электромагнетизм)
- Уравнение Лапласа
- Уравнение Пуассона
- Уравнение Эйнштейна (общая теория относительности)
- Уравнение Шредингера (квантовая механика)
- Уравнение диффузии
- Уравнение теплопроводности (термодинамика)
- Уравнение Кортевега-де Вриза (уединённые волны)
- Уравнения Навье-Стокса (течения вязкой жидкости)
- Уравнение Эйлера (невязкие течения газовых сред)
- Уравнение Линя-Рейсснера-Цяня (трансзвуковые нестационарные течения)
- Уравнения Лямэ (теория упругости)
См. также
- Общее решение дифференциального уравнения
- Частное решение дифференциального уравнения
- Простейшие дифференциальные уравнения первого порядка
- Особое решение
- Задача Коши
- Однородное дифференциальное уравнение
- Неоднородное дифференциальное уравнение
- Линейное дифференциальное уравнение
- Дифференциальное уравнение Бернулли
- Дифференциальные уравнения Лагранжа и Клеро
- Уравнение Риккати
- Дифференциальное уравнение в частных производных
- Квазидифференциальное уравнение
- Дробно-дифференциальное уравнение
- Интегро-дифференциальные уравнения
- Поле направлений
Примечания
- ↑ Арнольд В. И. Обыкновенные дифференциальные уравнения. — М.: Наука, 1971, стр. 16
- ↑ Игорь Юсупович Алибеков. Численные методы, У/П. — МГИУ, 2008-01-01. — С. 180. — 221 с. — ISBN 9785276014623.
- ↑ Рождественский Б. Л., Яненко Н. Н. Системы квазилинейных уравнений и их приложения к газовой динамике. — М.: Наука, 1988. — 686 с.
Литература
Энциклопедии и справочники
- Дифференциальные уравнения // Дебитор — Евкалипт. — М. : Советская энциклопедия, 1972. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 8).
- Дифференциальные уравнения : [арх. 10 ноября 2014] / И. П. Макаров // Математическая энциклопедия : в 5 т. / Гл. ред. И. М. Виноградов. — М. : Советская Энциклопедия, 1979. — Т. 2: Д’Аламбера оператор — Кооперативная игра. — 552 с. — 1104 стб.
- Зайцев В. Ф., Полянин А. Д. Справочник по обыкновенным дифференциальным уравнениям. — М.: Физматлит, 2001.
- Зайцев В. Ф., Полянин А. Д. Справочник по дифференциальным уравнениям с частными производными первого порядка. М.: Физматлит, 2003.
- Камке Э. Справочник по дифференциальным уравнениям в частных производных первого порядка. — М.: Наука, 1966.
- Камке Э. Справочник по обыкновенным дифференциальным уравнениям. — М.: Наука, 1976.
- Полянин А. Д. Справочник по линейным уравнениям математической физики. — М.: Физматлит, 2001.
- Полянин А. Д., Зайцев В. Ф.. Справочник по нелинейным уравнениям математической физики: Точные решения. — М.: Физматлит, 2002 .
Учебники
- Арнольд В. И. Обыкновенные дифференциальные уравнения. — М.: Наука, 1966.
- Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. — М.: Наука, 1970.
- Полянин А. Д., Зайцев В. Ф., Журов А. И. Методы решения нелинейных уравнений математической физики и механики. — М.: Физматлит, 2005.
- Понтрягин Л. С. Обыкновенные дифференциальные уравнения. — М.: Наука, 1974.
- Тихонов А. Н., Самарский А. А. Уравнения математической физики. — М.: Наука, 1972.
- Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. — 4-е изд. — Физматлит, 2005.
- Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — Изд. 2-е. — 2007. — 240 с. — ISBN 5354004160.
- Чарльз Генри Эдвардс , Дэвид Э. Пенни. Дифференциальные уравнения и проблема собственных значений: моделирование и вычисление с помощью Mathematica, Maple и MATLAB = Differential Equations and Boundary Value Problems: Computing and Modeling. — 3-е изд. — М.: «Вильямс», 2007. — ISBN 978-5-8459-1166-7.
- Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. — М.: Наука, 1969.
Ссылки
- Сайт под редакцией А. Д. Полянина «Мир математических уравнений» — EqWorld
- Русскоязычные ресурсы по дифференциальным уравнениям в Открытом Каталоге.
- Примеры решения дифференциальных уравнений
- Эксперсс-курс по дифференциальным уравнениям: пособие и видио-лекции Р.В. Шамина
- Поле направлений дифференциального уравнения первого порядка — учебный фильм, производство Леннаучфильм.