В явном виде частная производная функции определяется следующим образом:
График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz.
Сечения графика, изображенного выше, плоскостью y = 1
Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).
Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -ом месте.
Примеры
Объем конуса зависит от высоты и радиуса основания
Частная производная объема V относительно радиуса r
которая показывает скорость, с которой изменяется объем конуса, если его радиус меняется, а его высота остается неизменной. Например, если считать единицы измерения объема , а измерения длины , то вышеуказанная производная будет иметь размерность скорости измерения объема , т.е. изменение величины радиуса на 1 м будет соответствовать изменению объема конуса на .
Частная производная относительно h
которая показывает скорость, с которой изменяется объем конуса, если его высота меняется, а его радиус остается неизменным.
Полная производная V относительно r и h
и
Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.
Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,
Это дает полную производную относительно r:
Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.