Функция Хевисайда (единичная ступенчатая функция, функция единичного скачка, включенная единица) — кусочно-постоянная функция, равная нулю для отрицательных значений аргумента и единице — для положительных. В нуле эта функция, вообще говоря, не определена, однако её обычно доопределяют в этой точке некоторым числом, чтобы область определения функции содержала все точки действительной оси. Чаще всего неважно, какое значение функция принимает в нуле, поэтому могут использоваться различные определения функции Хевисайда, удобные по тем или иным соображениям, например[1]
Дискретный единичный импульс является первой разностью дискретной функции Хевисайда:
Аналитические формы
Для более удобного использования функцию Хевисайда можно аппроксимировать с помощью непрерывной функции:
где большему соответствует более крутой подъём функции в точке . Если принять , уравнение можно записать в предельной форме:
Существует несколько других аппроксимаций непрерывными функциями:
Запись
Часто используется и бывает полезной интегральная форма записи единичной функции:
Значение функции в нуле часто задаётся как , или . — наиболее употребительный вариант, поскольку по соображениям симметрии в точке разрыва первого рода удобно доопределять функцию средним арифметическим соответствующих односторонних пределов, кроме того в этом случае функция Хевисайда связана с функцией знака:
Значение в нуле может явно указываться в записи функции:
Преобразование Фурье
Производная функции Хевисайда равна дельта-функции (то есть функция Хевисайда — первообразная дельта-функции):
.
Следовательно, применив преобразование Фурье к первообразной дельта-функции , получим её изображение вида:
то есть:
(второй член — соответствующий нулевой частоте в разложении — описывает постоянное смещение функции Хевисайда вверх; без него получилась бы нечётная функция).
↑В теории автоматического управления и теории операторов Лапласа часто обозначается как . В англоязычной литературе часто обозначают или . См., например,
Волков И. К., Канатников А. Н. Интегральные преобразования и операционное исчисление: Учеб. для вузов / Под ред. B. C. Зарубина, А. П. Крищенко. — 2-е изд. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. — 228 с. — (Математика в техническом университете; Вып. XI). — ISBN 5-7038-1273-9.;
Методы классической и современной теории автоматического управления: Учебник в 5-и тт.; 2-е изд., перераб. и доп. Т. 1: Математические модели, динамические характеристики и анализ систем автоматического управления / Под ред. К. А. Пупкова, Н. Д. Егупова. — М.: Издательство МГТУ им. Н. Э. Баумана, 2004. — 656 с. — ISBN 5-7038-2189-4 (Т. 1).