Функция Хевисайда

Функция Хевисайда (единичная ступенчатая функция, функция единичного скачка, включенная единица) — кусочно-постоянная функция, равная нулю для отрицательных значений аргумента и единице — для положительных. В нуле эта функция, вообще говоря, не определена, однако её обычно доопределяют в этой точке некоторым числом, чтобы область определения функции содержала все точки действительной оси. Чаще всего неважно, какое значение функция принимает в нуле, поэтому могут использоваться различные определения функции Хевисайда, удобные по тем или иным соображениям, например[1]

Единичная функция Хевисайда

Другое распространённое определение:

Функция Хевисайда широко используется в математическом аппарате теории управления и теории обработки сигналов для представления сигналов, переходящих в определённый момент времени из одного состояния в другое. В математической статистике эта функция применяется, например, для записи эмпирической функции распределения. Названа в честь Оливера Хевисайда.

Функция Хевисайда является первообразной функцией для дельта-функции Дирака, , это также можно записать как:

Дискретная форма

Можно определить дискретную функцию Хевисайда как функцию от целого аргумента  :

 

где   — целое число.

Дискретный единичный импульс является первой разностью дискретной функции Хевисайда:

 

Аналитические формы

Для более удобного использования функцию Хевисайда можно аппроксимировать с помощью непрерывной функции:

 

где большему   соответствует более крутой подъём функции в точке  . Если принять  , уравнение можно записать в предельной форме:

 

Существует несколько других аппроксимаций непрерывными функциями:

 
 

Запись

Часто используется и бывает полезной интегральная форма записи единичной функции:

 

Значение функции в нуле часто задаётся как  ,   или  .   — наиболее употребительный вариант, поскольку по соображениям симметрии в точке разрыва первого рода удобно доопределять функцию средним арифметическим соответствующих односторонних пределов, кроме того в этом случае функция Хевисайда связана с функцией знака:

 

Значение в нуле может явно указываться в записи функции:

 

Преобразование Фурье

Производная функции Хевисайда равна дельта-функции (то есть функция Хевисайда — первообразная дельта-функции):

 .

Следовательно, применив преобразование Фурье к первообразной дельта-функции  , получим её изображение вида:

 

то есть:

 

(второй член — соответствующий нулевой частоте в разложении — описывает постоянное смещение функции Хевисайда вверх; без него получилась бы нечётная функция).

См. также

Примечания

  1. В теории автоматического управления и теории операторов Лапласа часто обозначается как  . В англоязычной литературе часто обозначают   или  . См., например,
    • Волков И. К., Канатников А. Н. Интегральные преобразования и операционное исчисление: Учеб. для вузов / Под ред. B. C. Зарубина, А. П. Крищенко. — 2-е изд. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. — 228 с. — (Математика в техническом университете; Вып. XI). — ISBN 5-7038-1273-9.;
    • Методы классической и современной теории автоматического управления: Учебник в 5-и тт.; 2-е изд., перераб. и доп. Т. 1: Математические модели, динамические характеристики и анализ систем автоматического управления / Под ред. К. А. Пупкова, Н. Д. Егупова. — М.: Издательство МГТУ им. Н. Э. Баумана, 2004. — 656 с. — ISBN 5-7038-2189-4 (Т. 1).