Формула конечных приращений или теорема Лагра́нжа о среднем значении утверждает, что если функция непрерывна на отрезке и дифференцируема в интервале , то найдётся такая точка , что
Геометрически это можно переформулировать так: на отрезке найдётся точка, в которой касательная параллельна хорде, проходящей через точки графика, соответствующие концам отрезка.
Механическое истолкование: Пусть — расстояние точки в момент от начального положения. Тогда есть путь, пройденный с момента до момента , отношение — средняя скорость за этот промежуток. Значит, если скорость тела определена в любой момент времени , то в некоторый момент она будет равна своему среднему значению на этом участке.
Для функции одной переменной:
Введем . Для нее выполнены условия теоремы Ролля: на концах отрезка ее значения равны . Воспользовавшись упомянутой теоремой, получим, что существует точка , в которой производная функции равна нулю:
что и требовалось доказать.
Теорема Лагранжа о конечных приращениях - одна из самых важных, узловая теорема во всей системе дифференциального исчисления. Она имеет массу приложений в вычислительной математике, и главнейшие теоремы математического анализа также являются её следствиями.
Следствие 1. Дифференцируемая на отрезке функция с производной, равной нулю, есть константа.
Доказательство. Для любых и существует точка , такая что .
Значит, при всех и верно равенство .
Замечание. Аналогично доказывается следующий важный критерий монотонности для дифференцируемых функций: Дифференцируемая функция возрастает/убывает на отрезке тогда и только тогда, когда её производная на этом отрезке неотрицательна/неположительна. При этом строгая положительность/отрицательность производной влечёт строгую монотонность функции .
Следствие 2 (Формула Тейлора с остаточным членом в форме Лагранжа). Если функция дифференцируема раз в окрестности точки , то для малых (т.е. тех, для которых отрезок лежит в указанной окрестности) справедлива формула Тейлора:
где - некоторое число из интервала .
Замечание. Данное следствие является в то же время и обобщением. При из него получается сама теорема Лагранжа о конечных приращениях.
Следствие 3. Если функция переменных дважды дифференцируема в окрестности точки О и все её вторые смешанные производные непрерывны в точке О, тогда в этой точке справедливо равенство:
Доказательство для . Зафиксируем значения и и рассмотрим разностные операторы
По теореме Лагранжа существуют числа , такие что
при в силу непрерывности вторых производных функции .
Аналогично доказывается, что .
Но так как , (что проверяется непосредственно), то эти пределы совпадают.
Замечание. Следствием этой формулы является тождество для оператора внешнего дифференциала, определённого на дифференциальных формах.
Следствие 4 (Формула Ньютона-Лейбница). Если функция дифференцируема на отрезке и её производная интегрируема по Риману на этом отрезке, то справедлива формула: .
Доказательство. Пусть - произвольное разбиение отрезка . Применяя теорему Лагранжа, на каждом из отрезков найдём точку такую, что .
Суммируя эти равенства, получим:
Слева стоит интегральная сумма Римана для интеграла и заданного отмеченного разбиения. Переходя к пределу по диаметру разбиения, получим формулу Ньютона-Лейбница.
Замечание. Следствием (и обобщением) формулы Ньютона-Лейбница является формула Стокса, а следствием формулы Стокса является интегральная теорема Коши - основная теорема теории аналитических функций (ТФКП).
Следствие 5 (Теорема об оценке конечных приращений). Пусть отображение непрерывно дифференцируемо в выпуклой компактной области пространства . Тогда .
Замечание. Без использования теоремы об оценке конечных приращений не обходятся доказательства таких теорем, как теорема об обратном отображении, теорема о неявной функции, теорема о существовании и единственности решения задачи Коши для обыкновенных дифференциальных уравнений.