Аналогичная формула применима также и при вычислении корней n-ой степени из ненулевого комплексного числа:
где k = 0, 1, …, n—1.
Из основной теоремы алгебры следует, что корни n-й степени из комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса с центром в нуле.