Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.
К тригонометрическим функциям традиционно причисляют:
В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются , , . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.
Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).
Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках , а у котангенса и косеканса — в точках .
Графики тригонометрических функций показаны на рис. 1.
В школьном курсе геометрии тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника[3]. Пусть AOB — прямоугольный треугольник с острым углом α. Тогда:
Построив систему координат с началом в точке , направлением оси абсцисс вдоль и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.
Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).
Тригонометрические функции являются периодическими функциями с периодами (360°) для синуса, косинуса, секанса и косеканса, и (180°) для тангенса и котангенса.
Тригонометрические функции любого угла можно свести к тригонометрическим функциям острого угла, используя их периодичность и так называемые формулы приведения. Это необходимо, например, для нахождения значений тригонометрических функций по таблицам, поскольку в таблицах обычно приводятся значения только для острых углов.
Обычно тригонометрические функции определяются геометрически[4]. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса с центром в начале координат . Всякий угол можно рассматривать как поворот от положительного направления оси абсцисс до некоторого луча , при этом направление поворота против часовой стрелки считается положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , ординату обозначим (см. рисунок 2).
В силу свойств подобных фигур значения тригонометрических функций не зависят от величины радиуса окружности . Часто радиус принимают равным величине единичного отрезка; тогда синус равен ординате , а косинус — абсциссе . На рисунке 3 показаны величины тригонометрических функций для единичной окружности.
Если — вещественное число, то синусом в математическом анализе называется синус угла, радианная мера которого равна . Аналогично для прочих тригонометрических функций.
Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решения дифференциального уравнения
с дополнительными условиями: для косинуса и для синуса, то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:
Функции косинус и синус можно определить[5] как решения ( и соответственно) системы функциональных уравнений:
при дополнительных условиях:
и при .
Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:
Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:
где
Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («∞» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).
Радианы | ||||||||
---|---|---|---|---|---|---|---|---|
Градусы | ||||||||
Радианы | |||||||||
---|---|---|---|---|---|---|---|---|---|
Градусы | |||||||||
Радианы | ||||||||
---|---|---|---|---|---|---|---|---|
Градусы | ||||||||
Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:
Это соотношение называется основным тригонометрическим тождеством.
Деля это уравнение на квадрат косинуса и синуса соответственно, имеем далее:
Из определения тангенса и котангенса следует, что
Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для :
sin | cos | tg | ctg | sec | cosec | |
---|---|---|---|---|---|---|
Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:
Функции — периодические с периодом , функции и — c периодом .
Формулами приведения называются формулы следующего вида:
Здесь — любая тригонометрическая функция, — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:
Некоторые формулы приведения:
Значения тригонометрических функций суммы и разности двух углов:
Аналогичные формулы для суммы трёх углов:
Формулы двойного угла:
Формулы тройного угла:
Прочие формулы для кратных углов:
Из формулы Муавра можно получить следующие общие выражения для кратных углов:
где — целая часть числа , — биномиальный коэффициент.
Формулы половинного угла:
Формулы для произведений функций двух углов:
Аналогичные формулы для произведений синусов и косинусов трёх углов:
Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.
Существует представление:
где угол находится из соотношений:
Все тригонометрические функции можно выразить через тангенс половинного угла:
Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:
Эти соотношения выполняются при любом значении .
Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:
Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[6]: