Теория автоматов — раздел дискретной математики, изучающий абстрактные автоматы — вычислительные машины, представленные в виде математических моделей — и задачи, которые они могут решать.
Теория автоматов наиболее тесно связана с теорией алгоритмов: автомат преобразует дискретную информацию по шагам в дискретные моменты времени и формирует результат по шагам заданного алгоритма.
Символ — любой атомарный блок данных, который может производить эффект на машину. Чаще всего символ — это буква обычного языка, но может быть, к примеру, графическим элементом диаграммы.
Слово — строка символов, создаваемая через конкатенацию (соединение).
Алфавит — конечный набор различных символов (множество символов)
Язык — множество слов, формируемых символами данного алфавита. Может быть конечным или бесконечным.
Автоматы
Автоматы могут быть детерминированные и недетерминированные.
Детерминированный Конечный Автомат (ДКА) — последовательность (кортеж) из пяти элементов , где:
— множество состояний автомата
— алфавит языка, который понимает автомат
— функция перехода, такая что
— начальное состояние
— множество конечных состояний.
Недетерминированный Конечный Автомат (НКА) — последовательность (кортеж) из пяти элементов , где:
— множество состояний автомата
— алфавит языка, который понимает автомат
— отношение перехода, , где - пустое слово. То есть, НКА может совершить скачок из состояния q в состояние p, в отличие от ДКА, через пустое слово, а также перейти из q по a несколько состояний (что опять же в ДКА невозможно)
— множество начальных состояний
— множество конечных состояний.
Слово
Автомат читает конечную строку символов a1,a2,…., an , где ai ∈ Σ, которая называется входным словом.Набор всех слов записывается как Σ*.
Принимаемое слово
Слово w ∈ Σ* принимается автоматом, если qn ∈ F.
Говорят, что язык L читается (принимается) автоматом M, если он состоит из слов w на базе алфавита таких, что если эти слова вводятся в M, по окончанию обработки он приходит в одно из принимающих состояний F:
Обычно автомат переходит из состояния в состояние с помощью функции перехода , читая при этом один символ из ввода. Есть автоматы, которые могут перейти в новое состояние без чтения символа. Функция перехода без чтения символа называется -переход (эпсилон-переход).
Применение
Теория автоматов лежит в основе всех цифровых технологий и программного обеспечения, так например компьютер является частным случаем практической реализации конечного автомата.
Часть математического аппарата теории автоматов напрямую применяется при разработке лексеров и парсеров для формальных языков, в том числе языков программирования, а также при построении компиляторов и разработке самих языков программирования.
Другое важнейшее применение теории автоматов — математически строгое нахождение разрешимости и сложности задач.
Типовые задачи
Построение и минимизация автоматов — построение абстрактного автомата из заданного класса, решающего заданную задачу (принимающего заданный язык), возможно, с последующей минимизацией по числу состояний или числу переходов.
Синтез автоматов — построение системы из заданных «элементарных автоматов», эквивалентной заданному автомату. Такой автомат называется структурным. Применяется, например, при синтезе цифровых электрических схем на заданной элементной базе.
Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. — М.: Вильямс, 2002. — С. 528. — ISBN 0-201-44124-1.
Касьянов В. Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995. — C. 112.