Пусть и — векторные поля на , — оператор производной Ли по направлению векторного поля . Коммутатор операторов и есть дифференциальный оператор первого порядка, поэтому существует такое векторное поле , для которого[3][Notes 1]
Это векторное поле называется коммутатором, скобками Ли или скобками Пуассона двух векторных полей. Явное выражение для скобок Ли полей:
Операция коммутирования задаёт на множестве векторных полей структуру алгебры Ли.
Скобки Пуассона функций
Пусть — симплектическое многообразие. Симплектическая структура на позволяет ввести на множестве функций на операцию скобок Пуассона, обозначаемую или и задаваемую по правилу[1][Notes 2]
где (также ) — векторное поле, соответствующее функции Гамильтона. Оно определяется через дифференциал функции и изоморфизм между 1-формами и векторами, задаваемый (невырожденной) формой . Именно, для любого векторного поля
Алгебра Ли функций Гамильтона
В силу кососимметричности и билинейности , скобка Пуассона также будет кососимметричной и билинейной:
Выражение
является линейной функцией вторых производных каждой из функций . Однако,
Это выражение не содержит вторых производных . Аналогично, оно не содержит вторых производных и , а потому
то есть скобки Пуассона удовлетворяют тождеству Якоби. Таким образом, скобки Пуассона позволяют ввести на множестве функций на структуру алгебры Ли. Из тождества Якоби следует, что для любой функции
,
то есть
— операция построения гамильтонова векторного поля по функции задаёт гомоморфизм алгебры Ли функций в алгебру Ли векторных полей.
Функция является первым интегралом для гамильтоновой системы с гамильтонианом тогда и только тогда, когда
Скобка Пуассона двух первых интегралов системы — снова первый интеграл (следствие тождества Якоби).
Рассмотрим эволюцию гамильтоновой системы с функцией Гамильтона , заданной на многообразии . Полная производная по времени от произвольной функции запишется в виде
↑Некоторые авторы [Арнольд] используют определение с противоположным знаком, при этом также изменяется знак в определении скобок Пуассона функций (см. ниже). Этот подход продиктован, по-видимому, стремлением сохранить как естественные геометрические определения гамильтоновых полей и их свойств, так и традиционную форму записи скобок Пуассона в координатах. Однако, при этом разрушается естественная симметрия между коммутаторами производных Ли, векторов и функций. Дальнейшие проблемы возникают при переходе к общим понятиям дифференциальной геометрии (формы, векторнозначные формы, различные дифференцирования), где отсутствие указанной симметрии неоправданно усложняет формулы. Поэтому в данной статье будут использованы другие определения, с оговорками.
↑В некоторых книгах [Арнольд] принято определение с противоположным знаком, а именно При этом также определяется с противоположным знаком коммутатор векторных полей (см. выше), а выражение для скобки Пуассона в координатах принимает традиционный вид, однако появляется лишний минус в выражении и формуле для коммутатора полей.
↑В [Арнольд], [Гантмахер] выражение имеет противоположный знак (аналогично вышеуказанным замечаниям). Традиционно выражение записывают как в [Гантмахер].
Литература
↑ 12Гантмахер Ф. Р. Лекции по аналитической механике: Учебное пособие для вузов / Под ред. Е. С. Пятницкого. — 3-е изд. — М.: ФИЗМАТЛИТ, 2005. — 264 с. — ISBN 5-9221-0067-Х.
↑Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М.: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5.