Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:
|
|
|
|
|
|
|
(Здесь
- бесконечно малая величина, а
- бесконечно большая величина)
по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.
Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.
Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки.
Для раскрытия неопределённостей видов
,
,
пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.



Для раскрытия неопределённостей типа
используется следующий алгоритм:
- Выявление старшей степени переменной;
- Деление на эту переменную как числителя, так и знаменателя.
Для раскрытия неопределённостей типа
существует следующий алгоритм:
- Разложение на множители числителя и знаменателя;
- Сокращение дроби.
Для раскрытия неопределённостей типа
иногда удобно применить следующее преобразование:
- Пусть
и 
![{\displaystyle \lim _{x\to a}[f(x)-g(x)]=[\infty -\infty ]=\lim _{x\to a}\left({\frac {1}{\frac {1}{f(x)}}}-{\frac {1}{\frac {1}{g(x)}}}\right)=\lim _{x\to a}{\frac {{\frac {1}{g(x)}}-{\frac {1}{f(x)}}}{{\frac {1}{g(x)}}\cdot {\frac {1}{f(x)}}}}=\left[{\frac {0}{0}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/517f04712e05c90a5f38c57cccdf7ba52018176a)