Явное определение понятия поля относят к Дедекинду (1871 год), который использовал немецкий термин Körper (тело). Термин «поле» (англ.field) ввёл в 1893 году американский математик Элиаким Гастингс Мур[1].
Будучи наиболее близким из всех общеалгебраических абстракций к обычным числам, поле используется в линейной алгебре как структура, универсализирующая понятие скаляра, и основная структура линейной алгебры — линейное пространство — определяется как конструкция над произвольным полем. Также теория полей в значительной степени составляет инструментальную основу таких разделов, как алгебраическая геометрия и алгебраическая теория чисел.
Формальные определения
Алгебра над множеством , образующая коммутативную группу по сложению над с нейтральным элементом и коммутативную группу по умножению над ненулевыми элементами , при выполняющемся свойстве дистрибутивности умножения относительно сложения.
Если раскрыть указанное выше определение, то множество с введёнными на нём алгебраическими операциями сложения и умножения (, т. е. ) называется полем, если выполнены следующие аксиомы:
Коммутативность сложения: .
Ассоциативность сложения: .
Существование нулевого элемента: .
Существование противоположного элемента: .
Коммутативность умножения: .
Ассоциативность умножения: .
Существование единичного элемента: .
Существование обратного элемента для ненулевых элементов: .
Дистрибутивность умножения относительно сложения: .
Аксиомы 1—4 соответствуют определению коммутативной группы по сложению над , аксиомы 5—8 соответствуют определению коммутативной группы по умножению над , а аксиома 9 связывает операции сложения и умножения дистрибутивным законом.
Аксиомы 1-7 и 9 — это определение коммутативного кольца с единицей.
Исключив аксиому коммутативности умножения, получим определение тела.
В связи с другими структурами (исторически возникшими позднее) поле может быть определено как коммутативное кольцо, являющееся телом. Иерархия структур следующая:
Над полями естественным образом вводятся основные общеалгебраические определения: подполем называется подмножество, само являющееся полем относительно сужения на него операций из основного поля, расширением — поле, содержащее данное в качестве подполя.
Гомоморфизм полей вводится также естественным образом: как отображение , такое что , и . В частности, никакой обратимый элемент при гомоморфизме не может перейти в ноль, так как , следовательно, ядро любого гомоморфизма полей нулевое, то есть гомоморфизм полей является вложением.
Характеристика поля — то же, что и характеристика кольца, наименьшее положительное целое число такое, что сумма копий единицы равна нулю:
Если такого числа не существует, то характеристика считается равной нулю. Задачу определения характеристики обычно решают с задействованием понятия простого поля — поля, не содержащего собственных подполей, благодаря факту, что любое поле содержит ровно одно из простых полей.
Поля Галуа — поля, состоящие из конечного числа элементов. Названы в честь их первого исследователя Эвариста Галуа.
Любая конечная подгруппа мультипликативной группы поля является циклической. В частности, мультипликативная группа ненулевых элементов конечного поля изоморфна .
С точки зрения алгебраической геометрии, поля — это точки, потому что их спектр состоит ровно из одной точки — идеала {0}. Действительно, поле не содержит других собственных идеалов: если к идеалу принадлежит ненулевой элемент, то в идеале находятся и все кратные ему, то есть всё поле. Обратно, коммутативное кольцо, не являющееся полем, содержит необратимый (и ненулевой) элемент a. Тогда главный идеал, порождённый a, не совпадает со всем кольцом и содержится в некотором максимальном (а следовательно простом) идеале, а значит спектр этого кольца содержит как минимум две точки.