Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Формальное введение понятия площадь и объём можно найти в статье мера Жордана, здесь мы приводим лишь намётки определения с комментариями.
Площадь — это вещественнозначная функция, определённая на определённом классе фигур евклидовой плоскости и удовлетворяющая четырём условиям:
Определённый класс должен быть замкнут относительно пересечения и объединения, а также относительно движений плоскости и включать в себя все многоугольники. Из этих аксиом следует монотонность площади, то есть
Чаще всего за «определённый класс» берут множество квадрируемых фигур. Фигура называется квадрируемой, если для любого существует пара многоугольников и , такие что и , где обозначает площадь .
Существует математически строгий, но неоднозначный способ определить площадь для всех ограниченных подмножеств плоскости. То есть на множестве всех ограниченных подмножеств плоскости существуют различные функции площади, удовлетворяющие вышеприведённым аксиомам, а множество квадрируемых фигур является максимальным множеством фигур, на которых площадь определяется однозначно.
То же самое можно сделать для длины на прямой, но нельзя для объёма в евклидовом пространстве и также нельзя для площади на единичной сфере в евклидовом пространстве, (смотри соответственно парадокс Банаха — Тарского и парадокс Хаусдорфа).
Фигура | Формула | Комментарий |
---|---|---|
Правильный треугольник | — длина стороны треугольника. | |
Треугольник | Формула Герона. — полупериметр, , и — длины сторон треугольника. | |
Треугольник | и — две стороны треугольника, а — угол между ними. | |
Треугольник | и — сторона треугольника и высота, проведённая к этой стороне. | |
Квадрат | — длина стороны квадрата. | |
Прямоугольник | и — длины сторон прямоугольника. | |
Ромб | — сторона ромба, — внутренний угол, — диагонали. | |
Параллелограмм | — длина одной из сторон параллелограмма, а — высота, проведённая к этой стороне. | |
Трапеция | и — длины параллельных сторон, а — расстояние между ними (высота). | |
Правильный шестиугольник | — длина стороны шестиугольника. | |
Правильный восьмиугольник | — длина стороны восьмиугольника. | |
Правильный многоугольник | — длина стороны многоугольника, а — количество сторон многоугольника. | |
— апофема (или радиус вписанной в многоугольник окружности), а — периметр многоугольника. | ||
Круг | или | — радиус окружности, а — её диаметр. |
Сектор круга | и — соответственно радиус и угол сектора (в радианах). | |
Эллипс | и — большая и малая полуоси эллипса. | |
Поверхность Цилиндра | и — радиус и высота цилиндра соответственно. | |
Боковая поверхность цилиндра | и — радиус и высота цилиндра соответственно. | |
Поверхность конуса | и — радиус и длина образующей соответственно. | |
Боковая поверхность конуса | и — радиус и длина образующей соответственно. | |
Поверхность сферы | и — радиус и диаметр соответственно. | |
Поверхность эллипсоида | См. статью. |