У этого термина существуют и другие значения, см. Пирамида.
Пирами́да (др.-греч.πυραμίς, род. п.πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину[1]. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Пирамида является частным случаем конуса[2].
Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объем пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит[3], а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12[4]).
Элементы пирамиды
SO — высота SF — апофема OF — радиус вписанной в основание окружности
апофема — высота боковой грани правильной пирамиды, проведённая из её вершины;
боковые грани — треугольники, сходящиеся в вершине;
боковые ребра — общие стороны боковых граней;
вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
основание — многоугольник, которому не принадлежит вершина пирамиды.
Развёртка пирамиды
Развёртка правильной пятиугольной пирамиды: 1. в плоскости основания («звезда») 2. в плоскости одной из боковых граней
Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру — её развёрткой.
Свойства пирамиды
Если все боковые рёбра равны, то:
вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
боковые рёбра образуют с плоскостью основания равные углы;
также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.
Если боковые грани наклонены к плоскости основания под одним углом, то:
в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
высоты боковых граней равны;
площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.
Теоремы, связывающие пирамиду с другими геометрическими телами
Описание сферы вокруг правильной пирамиды: SD — высота пирамиды. AD — радиус окружности, описывающей основание. В — середина ребра боковой грани С — точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им. AC=CS — радиус сферы описывающей пирамиду
Сфера вписанная в правильную пирамиду: D — центр основания SF — апофема ASD — биссекторная плоскость угла между боковыми гранями BCE — биссекторная плоскость угла между основанием и боковой гранью С — точка пересечения всех биссекторных плоскостей CK=CD — радиус сферы вписанной в пирамиду
около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие)[5]. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу;
Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие);[6]
Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые рёбра пирамиды равны между собой (необходимое и достаточное условие);
Высоты у таких конусов и пирамид равны между собой.
Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).
Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[7]:
где — скрещивающиеся рёбра , — расстояние между и , — угол между и ;
Боковая поверхность — это сумма площадей боковых граней:
Полная поверхность — это сумма площади боковой поверхности и площади основания:
Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
где — апофема , — периметр основания, — число сторон основания, — боковое ребро, — плоский угол при вершине пирамиды.
Особые случаи пирамиды
Правильная пирамида
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами:
боковые рёбра правильной пирамиды равны;
в правильной пирамиде все боковые грани — конгруэнтные равнобедренные треугольники;
в любую правильную пирамиду можно как вписать, так и описать вокруг неё сферу;
если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна , а каждый из них соответственно , где n — количество сторон многоугольника основания[8];
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Прямоугольная пирамида
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие между понятиями «правильная треугольная пирамида» и «правильный тетраэдр». Правильная треугольная пирамида — это пирамида с правильным треугольником в основании (грани же должны быть равнобедренными треугольниками). Правильным тетраэдром является тетраэдр, у которого все грани являются равносторонними треугольниками.
Примечания
↑Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
↑Математика в понятиях, определениях и терминах. Ч. 1. Пособие для учителей. Под ред. Л. В. Сабинина. М., Просвещение, 1978. 320 с. С. 253.
↑Б. Л. ван дер Варден. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. — 3-е изд.. — М.: КомКнига, 2007. — 456 с. — ISBN 978-5-484-00848-3.
↑Саакян С. М., Бутузов В. Ф. Изучение геометрии в 10—11-х классах: книга для учителя. — 4-е изд., дораб.. — М.: Просвещение, 2010. — 248 с. — (Математика и информатика). — ISBN 978-5-09-016554-9.
↑Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.
↑Кушнир И. А. Триумф школьной геометрии. — К.: Наш час, 2005. — 432 с. — ISBN 966-8174-01-1.
Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
Калинин А. Ю., Терешин Д. А. Стереометрия. 11 класс. — 2-е изд. — М.: Физматкнига, 2005. — 332 с. — ISBN 5-89155-134-9.
Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.