Отрезком может называться одно из двух близких понятий в геометрии и математическом анализе.
Отрезок прямой — часть прямой, ограниченная двумя точками. При этом сама точка в геометрии является абстрактным объектом, не имеющим никаких измеряемых характеристик. Отрезок прямой, соединяющий две точки и (которые называются концами отрезка), обозначается символом . Любая точка, лежащая между концами отрезка, называется его внутренней точкой. Расстояние между концами отрезка называют его длиной и обозначают .
Обычно у отрезка прямой неважно, в каком порядке рассматриваются его концы: то есть отрезки и представляют собой один и тот же отрезок. Если у отрезка определить направление, то есть порядок перечисления его концов, то такой отрезок называется направленным. Например, направленные отрезки и не совпадают. Особого обозначения у направленных отрезков нет — то, что у отрезка важно его направление обычно указывается особо.
Дальнейшее обобщение приводит к понятию вектора — класса всех равных по длине и сонаправленных направленных отрезков.
Отрезок числовой (координатной) прямой (числовой отрезок, сегмент) — множество вещественных чисел , удовлетворяющих неравенству , где заранее заданные вещественные числа и называются концами (граничными точками) отрезка. В противоположность им, остальные числа , удовлетворяющие неравенству , называются внутренними точками отрезка[1].
Отрезок обычно обозначается концевыми числами:
Любой отрезок, как подмножество вещественных чисел, заведомо включён в множество вещественных чисел. Отрезок является замкнутым промежутком.
Число называется длиной числового отрезка .
Система сегментов — это бесконечная последовательность элементов множества отрезков на числовой прямой .
Система сегментов обозначается . Подразумевается, что каждому натуральному числу поставлен в соответствие отрезок .
Система сегментов называется стягивающейся, если[2]
У любой стягивающейся системы сегментов существует единственная точка, принадлежащая всем сегментам этой системы.
Этот факт следует из свойств монотонной последовательности.
Это статья-заготовка по математике. Помогите Википедии, дополнив эту статью, как и любую другую. |