Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если около n-угольника описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).
Около любого правильногомногоугольника (все углы и стороны равны) можно описать окружность, и притом только одну.
Вокруг каждого треугольника может быть описана единственная окружность.
Уравнения окружности
Уравнение описанной окружности можно выразить через декартовы координаты вершин вписанного в неё треугольника. Предположим, что
являются координатами вершин A, B и C. Тогда окружность — геометрическое место точек v = (vx,vy), в декартовой плоскости удовлетворяющих уравнениям
,
гарантирующих то, что вершины A, B, C, и v находятся на одном и том же расстоянии r от общего центра u окружности. Используя поляризационное тождество, эти уравнения можно свести к условию, что линейное отображение, задаваемое матрицей
имеет ненулевое ядро. Таким образом, описанная окружность может быть описана как множество нулей определителя этой матрицы:
Раскладывая этот определитель по первой строке и вводя обозначения
мы приводим уравнение окружности к виду a|v|2 − 2Sv − b = 0,
или, предполагая, что точки A, B, C не лежали на одной прямой (в противном случае окружность вырождается в прямую линию, которая также может рассматриваться как обобщенная окружность с центром S на бесконечности), |v − S/a|2 = b/a + |S|2/a2,
выражая центр окружности как S / а и её радиус как √(b/a + |S|2/a2). Сходный подход позволяет вывести уравнение сферы, описанной вокруг тетраэдра.
Следовательно, с учетом радиуса r с центром Pc, точка на окружности P0 единичная нормаль к плоскости, содержащей окружность: , однопараметрическое уравнение окружности с началом в точке P0 и ориентированной в положительном направлении (то есть дающее векторы для правила правой руки) в этом смысле имеет вид:
Трилинейные и барицентрические координаты окружности
Без ограничения общности это можно выразить в упрощенном виде после перевода вершины A в начало координат декартовой системы координат, то есть, когда
A′ = A − A = (A′x,A′y) = (0,0). В этом случае координаты вершин B′ = B − A и C′ = C − A представляют собой векторы из вершины A′ к этим вершинам.
Заметим, что этот тривиальный перевод возможен для всех треугольников и координат центра описанной окружности треугольника A′B′C′ в следующем виде:
где a, b, c длины сторон (BC, CA, AB соответственно) треугольника.
В терминах углов треугольника барицентрические координаты центра описанной окружности имеют вид[2]
Вектор центра описанной окружности
Так как декартовы координаты любой точки являются средневзвешенным тех вершин, со своими весами, то барицентрические координаты точки нормируются в сумме единицей, тогда вектор центра описанной окружности, можно записать в виде
Здесь U есть вектор центра описанной окружности, A, B, C являются векторами вершин. Делитель здесь равен 16S2, где S — площадь треугольника.
Для треугольника
Окружность, описанная около треугольника
Около треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров или медиатрис.
Углы
Равные углы у вписанного треугольника
Равные углы у вписанного треугольника
На рисунке показаны равные углы у треугольника, вписанного в окружность.
Углы, образуемые описанной окружностью со сторонами треугольника, совпадают с углами, которые образуют стороны треугольника, соединяясь друг с другом в вершинах. Сторона, противоположная углу α, дважды касается окружности: один раз на каждом конце; в каждом случае под одинаковым углом α (см. рис.) (аналогично для двух других углов). Это связано с теоремой об отрезке круга, дополнительном данному (the alternate segment theorem,), в которой говорится, что угол между касательной и хордой равен вписанному в окружность углу, опирающемуся на эту хорду.
Треугольные центры на окружности, описанной около треугольника ABC
В этом параграфе вершины углов обозначены, как A, B, C и все координаты являются трилинейными координатами.
Следующие точки на окружности, описанной около треугольника ABC:
Точка Штейнера = bc / (b2 − c2) : ca / (c2 − a2) : ab / (a2 − b2) = невершинная точка пересечения описанной окружности с эллипсом Штейнера. (Эллипс Штейнера с центром, расположенном в центроиде треугольника ABC представляет собой эллипс с наименьшей площадью из всех, что проходят через вершины A, B и C. Уравнение эллипса Штейнера имеет вид: 1/(ax) + 1/(by) + 1/(cz) = 0.)
Точка Тарри (Tarry point) = sec (A + ω) : sec (B + ω) : sec (C + ω) = диметрально противоположная точке Штейнера
Фокус параболы Киперта (Kiepert parabola) = csc (B − C) : csc (C − A) : csc (A − B). (см. рис.)
Парабола Киперта
Свойства вписанной параболы
Перспекторы вписанных в треугольник парабол лежат на описанном эллипсе Штейнера[4]. Фокус вписанной параболы лежит на описанной окружности, а директриса проходит через ортоцентр[5]. Парабола, вписанная в треугольник, имеющая директрисой прямую Эйлера, называется параболой Киперта. Её перспектор — четвёртая точка пересечения описанной окружности и описанного эллипса Штейнера, называемая точкой Штейнера.
Обозначаем буквой О точку пересечения серединных перпендикуляров к его сторонам и проведем отрезки ОА, ОВ и ОС.
Так как точка О равноудалена от вершин треугольника АВС, то ОА = OB = ОС.
Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и,
значит, является описанной около треугольника ABC.
3 из 4 окружностей, описанных относительно серединных треугольников (образованных средними линиями треугольника), пересекаются в одной точке внутри треугольника. Эта точка и есть центр описанной окружности основного треугольника.
Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника (называемого дополнительным треугольником).
Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
Из последних двух утверждений следует то, что сумма расстояний от ортоцентра остроугольного треугольника до трех его вершин в два раза больше, чем сумма расстояний от центра описанной окружности до трех его сторон, и равна . В тупоугольном треугольнике надо брать знак «-» в случае, если перпендикуляр из центра описанной окружности на сторону целиком лежит вне треугольника или если отрезок, проведенный из ортоцентра к вершине, целиком лежит вне треугольника. Остальные члены берутся со знаком «+».
Формула Карно. Пусть D — центр описанной окружноститреугольникаABC. Тогда сумма расстояний от D до сторон треугольника ABC, взятых со знаком «-», когда высота из D на сторону целиком лежит вне треугольника, будет равна , где r — радиус вписанной окружности, а R — описанной. В частности при правильном выборе знаков.
Пусть радиус-векторы вершин треугольника,
— радиус-вектор центра описанной окружности. Тогда
где
При этом — длины сторон треугольника, противоположных вершинам .
Уравнение описанной окружности
Пусть
координаты вершин треугольника в некоторой декартовой системе координат на плоскости,
— координаты центра описанной окружности.
Тогда уравнение описанной окружности
Координаты центра описанной окружности могут быть вычислены
где
В явном виде координаты центра окружности определяются по формулам:
Теоремы, связанные с описанной окружностью
Теорема о трезубце или теорема трилистника, или теорема Клайнэра: Если — точка пересечения биссектрисы угла с описанной окружностью треугольника , и — соответственно центры вписанной и вневписанной окружности, касающейся стороны , тогда .
Теорема Мансиона (продолжение). Середина дуги описанной окружности треугольника , не содержащая вершину , равноудалена от вершин и , центра вписанной окружности и центра вневписанной окружности. Середина дуги описанной окружности треугольника , содержащая вершину , равноудалена от вершин и , и центров и вневписанных окружностей.
Окружностно-чевианным треугольником называют треугольник с вершинами во вторых точках пересечения трех прямых, проведённых через вершины подерного треугольника и данную точку , с описанной окружностью.Теорема. Окружностно-чевианный треугольник подобен подерному (Доказательство в: http://www.problems.ru/view_problem_details_new.php?id=108130).
Теорема Симсона: Основания перпендикуляров, опущенных из точки описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой. Эта прямая называется прямой Симсона.
Произведение радиусов описанной и вписанной окружностей треугольника связано со сторонами a, b и c в виде[9]: p. 189, #298(d):
Если медиана m, высота h и внутренняя биссектриса t выходят из одной и той же вершины треугольника, около которого описана окружность радиуса R, тогда[10]:p.122,#96
Центр описанной окружности изогонально сопряжен с ортоцентром.
Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[11].
В треугольнике есть три окружности, которые касаются двух сторон треугольника и описанной окружности. Такие окружности называют полувписанными или окружностями Веррьера. Отрезки, соединяющие вершины треугольника и соответствующие точки касания окружностей Веррьера с описанной окружностью, пересекаются в одной точке, называемой точкой Веррьера. Она служит центром гомотетии, которая переводит описанную окружность во вписанную. Точки касания окружностей Веррьера со сторонами лежат на прямой, которая проходит через центр вписанной окружности.
Полувписанная окружность
Формула Карно утверждает, что в треугольникеABC сумма расстояний от центра Dописанной окружности до сторон треугольника ABC, взятых со знаком «-», когда высота из D на сторону целиком лежит вне треугольника (иначе со знаком «+»), будет равна , где r и R — радиусы вписанной и описанной окружностей[10]:p.83.
Формула Карно:
Например для рисунка формула Карно примет вид: .
Определения к последней теореме
Треугольник с вершинами в проекциях данной точки на стороны называется подерным или педальным треугольником этой точки.
Треугольник с вершинами во вторых точках пересечения прямых, проведённых через вершины и данную точку, с описанной окружностью, называют окружностно-чевианным треугольником.
Вариации по теме
Японская теорема (Japanese theorem)
Теорема[12]. Если во вписанном в окружность четырехугольнике провести диагональ, а в полученные два треугольника вписать две окружности, затем аналогично поступить, проведя вторую диагональ, тогда центры четырех образовавшихся окружностей являются вершинами прямоугольника (то есть лежат на одной окружности). Эту теорему называют японской теоремой (Japanese theorem). (см. рис.).
Вписанный простой (без самопересечений) четырёхугольник является выпуклым.
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180° ( радиан).
Можно описать окружность около:
любого четырехугольника, у которого два противоположных угла прямые
любого четырехугольника, у которого сумма противоположных углов равна 180 градусов
любого четырехугольника, у которого пересекаются в одной точке четыре серединных перпендикуляра его сторон (или медиатрисы его сторон, то есть перпендикуляры к сторонам, проходящие через их середины)
Первая теорема Птолемея. У четырёхугольника, вписанного в окружность, произведение длин диагоналей равно сумме произведений длин пар противоположных сторон:[13]:
.
Вторая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство.[14] :
Радиус окружности, описанной около четырёхугольника:
Площадь четырёхугольника, вписанного в окружность, можно вычислить по формуле Брахмагупты:
Та же Формула Брахмагупты для площади вписанного в окружность четырёхугольника может быть записана через определитель[15]:
Подробнее о четырехугольниках, вписанных в окружность (Cyclic quadrilateral), можно прочитать на английском языке [16]
Аналог теоремы Эйлера для вписано-описанного четырехугольника
Для радиусов R и r соответственно описанной и вписанной окружностей данного вписано-описанного четырёхугольника и расстояния d между центрами этих окружностей выполняется соотношение:
.
или
.
Для многоугольника
Если из отрезков составить многоугольник, то его площадь будет максимальна, когда он вписанный.
Если точка равноудалена от вершин многоугольника, то она совпадает с центром окружности, описанной около этого многоугольника.
Если A, B, C — углы сферического треугольника, P — их полусумма, то тангенс радиуса[17] описанной окружности будет равен[18]:78,83
Описанная окружность принадлежит сфере. Радиус, проведенный из центра сферы через центр описанной окружности пересечет сферу в точке пересечения серединных перпендикуляров (больших кругов сферы, перпендикулярных сторонам в их середине) к сторонам сферического треугольника[18]:21-22.
↑Стариков В. Н. Заметки по геометрии// Научный поиск: гуманитарные и социально-экономические науки: сборник научных трудов. Выпуск 1/ Гл. ред. Романова И. В. Чебоксары: ЦДИП «INet», 2014. С. 37-39
↑Здесь радиус окружности измеряется по сфере, то есть представляет собой градусную меру дуги большого круга, соединяющей точку пересечения радиуса сферы, проведенного из центра сферы через центр окружности, со сферой и вершину треугольника.
↑ 12Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — 154 с.
В сносках к статье найдены неработоспособные вики-ссылки.
Исправьте короткие примечания, установленные через шаблон {{sfn}} или его аналоги, в соответствии с инструкцией к шаблону, или добавьте недостающие публикации в раздел источников. Список сносок: