Опера́тор Лапла́са (лапласиа́н, оператор дельта) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию .
Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции: , таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом , то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа унитарен.
Оператор Лапласа является естественным обобщением на функции нескольких переменных обычной второй производной функции одного переменного. В самом деле, если функция имеет в окрестности точки непрерывную вторую производную , то, как это следует из формулы Тейлора
при ,
при
вторая производная есть предел
Если, переходя к функции от переменных, поступить таким же образом, то есть для заданной точки рассматривать её -мерную шаровую окрестность радиуса и разность между средним арифметическим
функции на границе такой окрестности с площадью границы и значением в центре этой окрестности , то в случае непрерывности вторых частных производных функции в окрестности точки значение лапласиана в этой точке есть предел
Одновременно с предыдущим представлением для оператора Лапласа функции , имеющей непрерывные вторые производные, справедлива формула
где — объём окрестности
Эта формула выражает непосредственную связь лапласиана функции с её объёмным средним в окрестности данной точки.
Доказательство этих формул можно найти, например, в [1].
Вышеизложенные пределы, во всех случаях, когда они существуют, могут служить определением оператора Лапласа функции Такое определение предпочтительнее обычного определения лапласиана, предполагающего существование вторых производных рассматриваемых функций, и совпадает с обычным определением в случае непрерывности этих производных.
Выражения для оператора Лапласа в различных криволинейных системах координат
Пусть на гладком многообразии задана локальная система координат и — риманов метрический тензор на , то есть метрика имеет вид
.
Обозначим через элементы матрицы и
.
Дивергенция векторного поля , заданного коодинатами (и представляющего дифференциальный оператор первого порядка ) на многообразии X вычисляется по формуле
Значение является скаляром, то есть не изменяется при преобразовании координат.
Применение
С помощью данного оператора удобно записывать уравнения Лапласа, Пуассона и волновое уравнение. В физике оператор Лапласа применим в электростатике и электродинамике, во многих уравнениях физики сплошных сред, а также при изучении равновесия мембран, плёнок или поверхностей раздела фаз с поверхностным натяжением (см. Лапласово давление), в стационарных задач диффузии и теплопроводности, которые сводятся, в непрерывном пределе, к обычным уравнениям Лапласа или Пуассона или к некоторым их обобщениям.