Окрестность

Окре́стность точки — множество, содержащее данную точку, и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.

Определения

Математический анализ

Пусть   произвольное фиксированное число.

Окрестностью точки   на числовой прямой (иногда говорят  -окрестностью) называется множество точек, удаленных от   не более чем на  , то есть  .

В многомерном случае роль окрестности выполняет открытый  -шар с центром в точке  .

В банаховом пространстве   окрестностью с центром в точке   называют множество  .

В метрическом пространстве   окрестностью с центром в точке   называют множество  .

Общая топология

  • Пусть задано топологическое пространство  , где   — произвольное множество, а   — определённая на   топология. Множество   называется окрестностью точки  , если существует открытое множество   такое, что  .
  • Аналогично окрестностью множества   называется такое множество  , что существует открытое множество  , для которого выполнено  .

Замечания

  • Приведённые выше определения не требуют, чтобы окрестность   была открытым множеством, но лишь чтобы она содержала открытое множество  . Некоторые авторы настаивают на том, что любая окрестность открыта.[1] Тогда окрестностью множества называется любое содержащее его открытое множество. Это не принципиальное для развития дальнейшей топологической теории различие. Однако в каждом случае важно фиксировать терминологию.
  • Прямо из определения следует, что   является окрестностью множества   тогда и только тогда, когда   есть окрестность любой точки  .

Пример

Пусть дана вещественная прямая со стандартной топологией. Тогда   является открытой окрестностью, а   — замкнутой окрестностью точки  .

Вариации и обобщения

Проколотая окрестность

Проколотой окрестностью точки называется окрестность точки, из которой исключена эта точка.

Строго говоря, проколотая окрестность не является окрестностью точки, так как согласно определению окрестности окрестность должна включать и саму точку.

Формальное определение: Множество   называется проко́лотой окре́стностью (вы́колотой окрестностью) точки  , если

 

где   — окрестность  .

См. также

Литература

  1. Рудин.