Обра́тная ма́трица — такая мматрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:
Квадратная матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.
Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:
Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A−1.
При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):
Вторая матрица после применения всех операций станет равна , то есть будет искомой. Сложность алгоритма — .
Матрица, обратная матрице , представима в виде
где — присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).
Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.
Матричное уравнение для обратной матрицы можно рассматривать как совокупность систем вида . Обозначим -й столбец матрицы через ; тогда , , поскольку -м столбцом матрицы является единичный вектор . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³)[1].
Если матрица A невырождена, то для неё можно рассчитать LUP-разложение . Пусть , . Тогда из свойств обратной матрицы можно записать: . Если умножить это равенство на U и L то можно получить два равенства вида и . Первое из этих равенств представляет собой систему из n² линейных уравнений для , из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для , из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно рекуррентно определить все n² элементов матрицы D. Тогда из равенства (PA)−1 = A−1P−1 = B−1 = D получаем равенство .
В случае использования LU-разложения не требуется перестановки столбцов матрицы D, но решение может разойтись даже если матрица A невырождена.
Сложность алгоритма — O(n³).
Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору , обеспечивающие выполнение условия (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы (а именно, если A — симметричная положительно определённая матрица и , то можно взять , где ; если же A — произвольная невырожденная матрица и , то полагают , где также ; можно конечно упростить ситуацию и, воспользовавшись тем, что , положить ). Во-вторых, при таком задании начальной матрицы нет гарантии, что будет малой (возможно, даже окажется ), и высокий порядок скорости сходимости обнаружится далеко не сразу.
Обращение матрицы 2 × 2 возможно только при условии, что .
В статье не хватает ссылок на источники (см. рекомендации по поиску). |