Метод сопряженных градиентов — метод нахождения локального минимума функции на основе информации о её значениях и её градиенте. В случае квадратичной функции в минимум находится за шагов.
Теорема (о существовании). Существует хотя бы одна система сопряжённых направлений для матрицы , т.к. сама матрица (её собственные вектора) представляет собой такую систему.
Обоснование метода
Нулевая итерация
Иллюстрация последовательных приближений метода наискорейшего спуска (зелёная ломаная) и метода сопряжённых градиентов (красная ломаная) к точке экстремума.
Пусть
Тогда .
Определим направление так, чтобы оно было сопряжено с :
Разложим в окрестности и подставим :
Транспонируем полученное выражение и домножаем на справа:
Приняв во внимание последнее, получим из выражения (4) окончательную формулу для вычисления :
К-я итерация
На k-й итерации имеем набор.
Тогда следующее направление вычисляется по формуле:
где непосредственно рассчитывается на k-й итерации, а все остальные уже были рассчитаны на предыдущих.
Это выражение может быть переписано в более удобном итеративном виде:
Алгоритм
Пусть — начальная точка, — направление антиградиента и мы пытаемся найти минимум функции . Положим и найдем минимум вдоль направления . Обозначим точку минимума .
Пусть на некотором шаге мы находимся в точке , и — направление антиградиента. Положим , где выбирают либо (стандартный алгоритм), либо (алгоритм Полака–Райбера). После чего найдем минимум в направлении и обозначим точку минимума . Если в вычисленном направлении функция не уменьшается, то нужно забыть предыдущее направление, положив и повторив шаг.
Формализация
Задаются начальным приближением и погрешностью:
Рассчитывают начальное направление:
Если или , то и останов.
Иначе
если , то и переход к 3;
иначе и переход к 2.
Случай квадратичной функции
Теорема. Если сопряжённые направления используются для поиска минимума квадратичной функции, то эта функция может быть минимизирована за шагов, по одному в каждом направлении, причём порядок несущественен.
Литература
Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. — М.: Высш. шк., 1986.
Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
Коршунов Ю.М., Коршунов Ю.М. Математические основы кибернетики. — М.: Энергоатомиздат, 1972.
Максимов Ю.А.,Филлиповская Е.А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
Максимов Ю.А. Алгоритмы линейного и дискретного программирования. — М.: МИФИ, 1980.
Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575-576.