Математи́ческое ожида́ние — одно из важнейших понятий в теории вероятностей, означающее среднее (взвешенное по вероятностям возможных значений) значение случайной величины[1].
В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения (более строгие определения см. ниже). Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонент случайного вектора.
В англоязычной литературе обозначается через [2] (например, от англ.Expected value или нем.Erwartungswert),
в русскоязычной — (возможно, от англ.Mean value или нем.Mittelwert, а возможно от «Математическое ожидание»). В статистике часто используют обозначение .
Для случайной величины, принимающей значения только 0 или 1 математическое ожидание равно p - вероятности "единицы".
Математическое ожидание суммы таких случайных величин равно np, где n — количество таких случайных величин.
Некоторые случайные величины не имеют математического ожидания, например, случайные величины, имеющие распределение Коши.
На практике математическое ожидание обычно оценивается как среднее арифметическое наблюдаемых значений случайной величины (выборочное среднее, среднее по выборке). Доказано, что при соблюдении определенных слабых условий (в частности, если выборка является случайной, то есть наблюдения являются независимыми) выборочное среднее стремится к истинному значению математического ожидания случайной величины при стремлении объема выборки (количества наблюдений, испытаний, измерений) к бесконечности.
как значение первой производной в единице: . Если математическое ожидание бесконечно, то и мы будем писать
Теперь возьмём производящую функцию последовательности «хвостов» распределения
Эта производящая функция связана с определённой ранее функцией свойством: при .
Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:
Математическое ожидание случайного вектора
Пусть — случайный вектор. Тогда по определению
,
то есть математическое ожидание вектора определяется покомпонентно.
Математическое ожидание числа (не случайной, фиксированной величины, константы) есть само число.
— константа;
Математическое ожидание линейно, то есть
,
где — случайные величины с конечным математическим ожиданием, а — произвольные константы;
В частности, математическое ожидание суммы (разности) случайных величин равно сумме (соответственно - разности) их математических ожиданий.
Математическое ожидание сохраняет неравенства, то есть если почти наверняка, и — случайная величина с конечным математическим ожиданием, то математическое ожидание случайной величины также конечно, и более того
;
Математическое ожидание не зависит от поведения случайной величины на событии вероятности нуль, то есть если почти наверняка, то
.
Математическое ожидание произведения двух независимых или некоррелированных[3] случайных величин равно произведению их математических ожиданий
Феллер В.Глава XI. Целочисленные величины. Производящие функции // Введение в теорию вероятностей и её приложения = An introduction to probability theory and its applicatons, Volume I second edition / Перевод с англ. Р. Л. Добрушина, А. А. Юшкевича, С. А. Молчанова Под ред. Е. Б. Дынкина с предисловием А. Н. Колмогорова. — 2-е изд. — М.: Мир, 1964. — С. 270—272.