Математическая структура — название, объединяющее понятия, общей чертой которых является их применимость к множествам, природа которых не определена. Для определения самой структуры задают отношения, в которых находятся элементы этих множеств. Затем постулируют, что данные отношения удовлетворяют неким условиям, которые являются аксиомами рассматриваемой структуры. Построить аксиоматическую теорию данной структуры — это значит вывести логические следствия из аксиом структуры, отказавшись от каких-либо других предположений относительно самих рассматриваемых элементов, и, в частности, от всяких гипотез относительно их «природы».
Отношения, являющиеся исходной точкой в определении структуры, могут быть весьма разнообразными.
Важнейшим типом структур являются алгебраические структуры. Например, отношение, называемое «законом композиции», то есть отношение между тремя элементами, которое определяет однозначно третий элемент как функцию двух первых. Когда отношения в определении структуры являются «законами композиции», соответствующая математическая структура называется алгебраической структурой. Например, структуры лупы, группы, поля определяется двумя законами композиции с надлежащим образом выбранными аксиомами. Так сложение и умножение на множестве действительных чисел определяют группу на множестве этих чисел.
Вторым важный тип представляют собой структуры, определённые отношением порядка, то есть структуры порядка. Это отношение между двумя элементами , которое чаще всего мы выражаем словами « меньше или равно » и которое в общем случае обозначается как . В этом случае не предполагается, что это отношение однозначно определяет один из элементов как функцию другого. В теории множеств часто вместо термина «структура порчдка» используется термин «решётка».
Третьим типом структур являются топологические структуры (или топологии). В них находят абстрактную математическую формулировку интуитивные понятия окрестности, предела и непрерывности.
Группа математиков, объединённая под именем Николя Бурбаки, представили математику как иерархию структур, идущих от простого к сложному, от общего к частному. Иерархия по Бурбаки, описанная в статье «Архитектура математики» (1948), представляется трехуровневой: