Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неогрниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует действительных чисел. Конечная геометрия может иметь любое конечное число измерений.
Конечные геометрии могут описываться линейной алгеброй, как векторные пространства и подобные структуры над конечным полем, которые называются геометриями Галуа, или могут описываться полностью комбинаторно. Многие, но не все, конечные геометрии являются геометриями Галуа, — например, любое проективное пространство размерностью три или более является изоморфным проективному пространству над конечным полем (проективизация векторного поля над конечным полем), и в этом случае различий нет, но в размерности два существуют комбинаторно определённые проективные плоскости, которые не являются изоморфными к проективным пространствам над конечными полями, и названы недезарговыми плоскостями, поэтому в этом случае различия имеются.
Следующие замечания касаются только конечных плоскостей.
Существуют два вида геометрии на плоскости: аффинная и проективная. В аффинной геометрии используется обычное понятие параллельности прямых. В проективной геометрии наоборот, любые две прямые пересекаются в единственно возможной точке, и потому параллельных прямых не существует. Как конечная аффинная геометрия на плоскости, так и конечная проективная геометрия на плоскости могут быть описаны достаточно простыми аксиомами. Аффинная геометрия на плоскости - это непустое множество (элементы которого называются "точками"), с непустым набором подмножеств (элементы которого называются "прямая"), таких, что:
Последняя аксиома обеспечивает, что геометрия не пуста, тогда как первые две описывают её природу.
Простейшая аффинная плоскость содержит лишь 4 точки, и называется аффинной плоскостью второго порядка. Каждая пара точек определяет уникальную прямую, поэтому указанная плоскость содержит 6 прямых. Это аналогично тетраэдру, у которого непересекающиеся рёбра рассматриваются как "параллельные", или квадрату, у которого параллельными считаются не только противоположные стороны, но и диагонали также рассматриваются как параллельные.