Ко́мпле́ксная плоскость[1] — это двумерное вещественное пространство , которое изоморфно полю комплексных чисел . Каждая точка такого пространства — это упорядоченная пара вида , где и — вещественные числа, и где первый элемент пары соответствует вещественной части, а второй элемент пары соответствует мнимой части комплексного числа :
Упорядоченную пару естественно интерпретировать как радиус-вектор с началом в нуле и с концом в точке .
В силу изоморфизма между и , алгебраические операции над комплексными числами переносятся на операции над соответствующими им радиус-векторами:
Результатом компактификации комплексной плоскости является расширенная комплексная плоскость — комплексная плоскость, дополненная бесконечно удалённой точкой, изоморфная комплексной сфере. Комплексная плоскость связана с комплексной сферой, например, стереографической проекцией.
Комплекснозначные функции комплексного переменного обычно интерпретируются как отображения комплексных плоскости или сферы в себя. Поскольку прямые на плоскости (при стереографической проекции) переходят в окружности на сфере, содержащие бесконечно удалённую точку, комплексные функции удобнее рассматривать на сфере.
Рассматривая на комплексной плоскости топологию , можно вводить понятия открытых, замкнутых множеств, и давать определения таким объектам как кривые и формулировать такие свойства комплексных функций как непрерывность, дифференцируемость и аналитичность, а комплексное представление позволяет компактно описывать эти свойства на языке соотношений между вещественными и мнимыми частями, а также, между модулями и аргументами соответствующих комплексных чисел.
Особую роль в комплексном анализе играют конформные отображения.
Фундаментальное понятие окрестности вводится на комплексной плоскости очень просто — окрестностью точки называется множество вида . Геометрически на комплексной плоскости окрестности имеют очень простой вид — это просто окружности с центром в определенных точках комплексной плоскости. Иногда для удобства требуется рассматривать проколотые окрестности .
Теперь определим открытое множество — согласно одному из вариантов классического определения из общей топологии, открытым множество будет, если оно для любой своей точки содержит некоторую его окрестность. Определение окрестности у нас уже есть, соответственно, открытое множество на полностью определено.
Определить предельную точку тоже будет нетрудно — точка будет предельной для множества , если для произвольной окрестности пересечение будет непусто. Другими словами, точка является предельной, если в произвольной «близости» к ней всегда можно будет найти точки множества. Множество предельных точек иногда называется производным и обозначается .
Множество будет называться замкнутым, если для него справедливо включение . Ясно видно, что для произвольного множества множество будет замкнуто; оно называется замыканием множества .
Точка будет называться граничной для множества , если для произвольной окрестности пересечения и будут непусты. Множество всех граничных точек называется граничным множеством или просто границей.
Множество будет называться всюду плотным в ином множестве , если для произвольной точки и любой окрестности пересечение непусто.
Как известно из элементарной математики, на комплексной плоскости расстояние между двумя точками равно модулю их разности. Теперь определим расстояние между точкой и некоторым множеством как величину .
На базе этого понятия уже можно определить расстояние между двумя произвольными множествами в : .
Множество называется связным, если для него выполнено соотношение . Если данная величина не равна нулю, то множество называется несвязным. Можно показать, что несвязное множество можно представить в виде объединения (конечного или счетного) , где — непересекающиеся связные множества, называемые связными компонентами множества . Мощность множества связных компонент называется порядком связности.
Множество называется звездным относительно точки , если для произвольной точки выполняется включение .
Множество называется выпуклым, если оно звездно относительно любой своей точки. Множество называется выпуклой оболочкой множества , если оно выпукло, и для любого выпуклого множества , содержащего множество выполняется включение .
Ломаной называется множество точек комплексной плоскости, представимое в виде объединения отрезков. Множество называется линейно связным, если для двух произвольных точек существует ломаная такая, что выполняется .
Можно доказать, что любое линейно связное множество будет связным. Отсюда немедленно следует, что связны все выпуклые и звездные множества.
Кривой или путём на комплексной плоскости называется отображение вида . Особо стоит отметить, что при таком определении можно конкретизировать не только вид кривой, который будет зависеть от аналитических свойств функции , но и её направление. Для примера, функции и будут определять одинаковую по виду кривую, но проходимую в противоположных направлениях.
Кривые и называются гомотопными, если существует кривая , зависящая от параметра таким образом, что и .
В комплексном анализе часто полезно рассматривать полную комплексную плоскость[2], дополненную по сравнению с обычной бесконечно удалённой точкой: . При таком подходе неограниченно возрастающая (по модулю) последовательность считается сходящейся к бесконечно удалённой точке. Алгебраические операции с бесконечностью не производятся, хотя несколько алгебраических соотношений имеют место:
-окрестностью бесконечно удалённой точки считается множество точек , модуль которых больше, чем , то есть внешняя часть -окрестностей начала координат.