Коммутативная операция — это бинарная операция , обладающая коммутативностью (от позднелат. commutativus — «меняющийся»), то есть переместительностью:
Закон Коммутативности (от лат. commutatio - изменение, перемена) — общее название логических законов, позволяющих менять местами высказывания, связанные конъюнкцией («и»), дизъюнкцией («или»). Эти законы аналогичны алгебраическим законам коммутативности для умножения, сложения и др., по которым результат умножения не зависит от порядка множителей, сложения - от порядка слагаемых и т. д. Символически закон коммутативности для конъюнкции и дизъюнкции записываются так (р, q — некоторые высказывания, & — конъюнкция, v — дизъюнкция, ≡ - эквивалентность): (p&q) ≡ (q&p), р и q тогда и только тогда, когда q и р; (pvq) ≡ (qvp), р или q, если и только если q или р. Данные эквивалентности можно проиллюстрировать примерами: «Завтра будет дождь или будет снег, если и только если завтра будет снег или завтра будет дождь». Существуют важные различия между употреблением слов «и» и «или» в повседневном языке и в логике. В обычном языке этими словами соединяются два высказывания, связанные по своему содержанию. Нередко обычное «и» употребляется при перечислении, а обычное «или» предполагает, что мы не знаем, какое именно из соединяемых им двух высказываний истинно. В логике значение «и» и «или» упрощается и делается более независимым от временной последовательности, от психологических факторов и т. п. «И» и «или» в логике коммутативны. Но «и» обычного языка, как правило, коммутативным не является. Скажем, «Он сломал ногу и попал в больницу» очевидно не равносильно «Он попал в больницу и сломал ногу».
В частности, если групповая операция является коммутативной, то группа называется абелевой. Если операция умножения в кольце является коммутативной, то кольцо называется коммутативным.
Термин «коммутативность» ввёл в 1814 году французский математик Франсуа Жозеф Сервуа (1767—1847).