Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Прямо из определения следует, что график касательной прямой проходит через точку . Угол между касательной к кривой и осью Ох удовлетворяет уравнению
где обозначает тангенс, а — коэффициент наклона касательной. Производная в точке равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.
Пусть и Тогда прямая линия, проходящая через точки и задаётся уравнением
Эта прямая проходит через точку для любого и её угол наклона удовлетворяет уравнению
В силу существования производной функции в точке переходя к пределу при получаем, что существует предел
а в силу непрерывности арктангенса и предельный угол
Прямая, проходящая через точку и имеющая предельный угол наклона, удовлетворяющий задаётся уравнением касательной:
Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.