Инвариант графа

Инвариант графа в теории графов — некоторое обычно числовое значение или упорядоченный набор значений (хэш-функция), характеризующее структуру графа . Играет важную роль при проверке изоморфизма графов, а также в задачах компьютерной химии.

Примеры инвариантов

К инвариантам графа относятся:

  • Число вершин   и число дуг/ребер  .
  • Упорядоченный по возрастанию или убыванию вектор степеней вершин   — при использовании переборных алгоритмов определения изоморфизма графов в качестве предположительно-изоморфных пар вершин выбираются вершины с совпадающими степенями, что способствует снижению трудоемкость перебора. Использование данного инварианта для k-однородных графов не приводит к снижению вычислительной сложность перебора, так как степени всех вершин подобного графа совпадают:  .
  • Упорядоченный по возрастанию или убыванию вектор собственных чисел матрицы смежности графа (спектр графа). Сама по себе матрица смежности не является инвариантом, так как при смене нумерации вершин она претерпевает перестановку строк и столбцов.
  • Определитель матрицы смежности.
  • Характеристический многочлен матрицы смежности.
  • Плотность графа   — число вершин максимальной по включению клики.
  • Неплотность графа   — число вершин максимального по включению безреберного подграфа (наибольшее количество попарно несмежных вершин). Несложно заметить, что   и  .
  • Хроматическое число  .
  • Число компонент связности графа  .
  • Число Хардвигера  .
  • Мини-   и макси-код   матрицы смежности, получаемые путем выписывания двоичных значений матрицы смежности в строчку с последующим переводом полученного двоичного числа в десятичную форму. Мини-коду соответствует такой порядок следования строк и столбцов, при котором полученное значение является минимально возможным; макси-коду — соответственно максимальным.

Многие инварианты (топологические индексы) используются в компьютерной химии для решения широкого круга общих и специальных задач[1]. К этим задачам относятся: поиск веществ с заранее заданными свойствами (поиск зависимостей типа "структура-свойство", "структура-фармакологическая активность"), первичная фильтрация структурной информации для бесповторной генерации молекулярных графов заданного типа и ряд других. Часто при этом наряду с топологическими индексами (зависящими только от структуры молекулы) используется информация и о химическом составе соединения.[2]

В качестве инварианта можно рассматривать не одно из приведенных выше чисел, а их кортеж (супериндекс) вида  , которому, в свою очередь, может быть сопоставлен многочлен вида

 

суммирование ведется до последнего отличного от нуля значения  . Подобным образом можно ввести еще несколько инвариантов графа:

  •  , где   — плотность графа,   — число полных i-вершинных подграфов (i-клик);
  •  , где   — неплотность графа,   — число безреберных i-вершинных подграфов;
  •  , где   — число вершин графа,   — хроматическое число,   — число i-раскрасок графа (правильных раскрасок с использованием ровно i цветов);
  •  , где   — число Хардвигера,   — число различных стягиваний связного графа   на i-клику.

Системы инвариантов графа, зависящие от двух и более параметров, можно записать в виде многочленов от нескольких формальных переменных   Например:

  •  , где   — число подграфов графа  , которые имеют   вершин и   ребер;
  •  , где   — количество i-вершинных подграфов, для которых число иголок (ребер, соединяющих вершины подграфа с остальными вершинами графа) равно  ;
  •  , где   — количество i-вершинных подграфов, имеющих   ребер и   иголок (обобщение инвариантов   и  ).

Совпадение инвариантов является необходимым, но не достаточным условием наличия изоморфизма[3].

Полные инварианты

Инвариант называется полным, если совпадения инвариантов графов необходимо и достаточно для установления изоморфизма. Например, каждое из значений   и   является полным инвариантом для графа с фиксированным числом вершин  .

Трудоемкость вычисления

Различные инварианты имеют различную трудоемкость вычисления. Инварианты  ,  ,   и   вычисляются тривиально, в то время как вычисление инвариантов  ,  ,  ,  ,  ,   и зависящих от них может быть достаточно вычислительно сложным. Существуют вероятностные алгоритмы определения значений приведенных «трудновычисляемых» инвариантов, однако применение подобных алгоритмов допускается не всегда.

В настоящее время полный инвариант графа, вычислимый за полиномиальное время, неизвестен, однако не доказано, что он не существует. Попытки его отыскания неоднократно предпринимались в 60-х — 80-х годах XX века, однако не увенчались успехом.

См. также

Примечания

  1. Химические приложения топологии и теории графов, под ред. Р. Кинга = Chemical Applications of Topology and Graph Theory, ed. by R. B. King. — М.: Мир, 1987. — 560 с.
  2. М. И. Трофимов, Е. А. Смоленский, Известия Академии наук. Серия химическая, 2005, 2166—2176.
  3. Зыков А. А. Основы теории графов. М.: «Наука», 1986 г. 384 с. ISBN 978-5-9502-0057-1