Замечательные пределы

Замеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:

  • Первый замечательный предел:
  • Второй замечательный предел:

Первый замечательный предел

 

Доказательство

Рассмотрим односторонние пределы   и   и докажем, что они равны 1.

Пусть  . Отложим этот угол на единичной окружности   так, чтобы его вершина совпадала с началом координат (точка O), а одна сторона совпадала с осью OX. Пусть K — точка пересечения второй стороны угла с единичной окружностью, а точка L — пересечение OK с касательной к этой окружности в точке  . Точка H — проекция точки K на ось OX.

Очевидно, что:

  (1)

(где   — площадь сектора  )

 
 
 

(из  :  )

Подставляя в (1), получим:

 

Так как при  :

 

Умножаем на  :

 

Перейдём к пределу:

 
 
 

Найдём левый односторонний предел (так как функция четна, в этом нет необходимости, достаточно доказать это для правого предела):

 

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

Следствия:

  •  
  •  
  •  
  •  

Второй замечательный предел

  или  

Доказательство существования второго замечательного предела:

    Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что  . Рассмотрим два случая:

1. Пусть  . Каждое значение x заключено между двумя положительными целыми числами:  , где   — это целая часть x.

Отсюда следует:  , поэтому
 .
Если  , то  . Поэтому, согласно пределу  , имеем:
 
 .
По признаку (о пределе промежуточной функции) существования пределов  .

2. Пусть  . Сделаем подстановку  , тогда

 
 .

Из двух этих случаев вытекает, что   для вещественного x.     

Следствия

  1.  
  2.  
  3.  
  4.  
  5.   для  ,  
  6.  

Применение

Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов.

Литература

Ссылки