Эта статья или раздел нуждается в переработке. |
Замеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:
Доказательство
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Пусть . Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат (точка O), а одна сторона совпадала с осью OX. Пусть K — точка пересечения второй стороны угла с единичной окружностью, а точка L — пересечение OK с касательной к этой окружности в точке . Точка H — проекция точки K на ось OX.
Очевидно, что:
(где — площадь сектора )
(из : )
Подставляя в (1), получим:
Так как при :
Умножаем на :
Перейдём к пределу:
Найдём левый односторонний предел (так как функция четна, в этом нет необходимости, достаточно доказать это для правого предела):
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия:
или
Доказательство существования второго замечательного предела:
Докажем вначале теорему для случая последовательности
По формуле бинома Ньютона:
Полагая , получим:
Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
Поэтому (3).
Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): .
Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
2. Пусть . Сделаем подстановку , тогда
Из двух этих случаев вытекает, что для вещественного x.
Следствия
Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов.
Для улучшения этой статьи желательно:
|