Евкли́дово простра́нство (также эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3.
В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространстоллллллллллолво с введённым на нём положительно определённым скалярным произведением, либо метрическое пространство, соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.
-мерное евклидово пространство обозначается также часто используется обозначение (если из контекста ясно, что пространство обладает евклидовой структурой).
Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения. Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел, на векторах которого задана вещественнозначная функция обладающая следующими тремя свойствами:
Аффинное пространство, соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством[1].
Пример евклидова пространства — координатное пространство состоящее из всевозможных кортежей вещественных чисел скалярное произведение в котором определяется формулой
Заданного на евклидовом пространстве скалярного произведения достаточно для того, чтобы ввести геометрические понятия длины и угла. Длина вектора определяется как и обозначается [2][3] Положительная определённость скалярного произведения гарантирует, что длина ненулевого вектора ненулевая, а из билинейности следует, что то есть длины пропорциональных векторов пропорциональны.
Угол между векторами и определяется по формуле Из теоремы косинусов следует, что для двумерного евклидова пространства (евклидовой плоскости) данное определение угла совпадает с обычным. Ортогональные векторы, как и в трёхмерном пространстве, можно определить как векторы, угол между которыми равен
В данном выше определении угла остался один пробел: для того, чтобы был определён, необходимо, чтобы выполнялось неравенство Это неравенство действительно выполняется в произвольном евклидовом пространстве, оно называется неравенством Коши — Буняковского — Шварца. Из этого неравенства, в свою очередь, следует неравенство треугольника: Неравенство треугольника, вместе с перечисленными выше свойствами длины, означает, что длина вектора является нормой на евклидовом векторном пространстве, а функция задаёт на евклидовом пространстве структуру метрического пространства (эта функция называется евклидовой метрикой). В частности, расстояние между элементами (точками) и координатного пространства задаётся формулой
Ортонормированный базис в евклидовом (векторном) пространстве — это базис, состоящий из попарно ортогональных векторов единичной нормы. Ортонормированные базисы наиболее удобны для вычислений. Так, например, скалярное произведение векторов с координатами и в ортонормированном базисе можно вычислять по формуле В любом евклидовом пространстве существует ортонормированный базис. Выбрав в двух евклидовых пространствах ортонормированные базисы и переведя один из них в другой линейным отображением, можно доказать, что любые два евклидовых пространства одинаковой размерности изоморфны (в частности, -мерное евклидово пространство изоморфно со стандартным скалярным произведением).
Вектор называется ортогональным подпространству, если он ортогонален всем векторам этого подпространства. Ортогональная проекция вектора на подпространство — это вектор ортогональный такой что представим в виде где Расстояние между концами векторов и является минимальным расстоянием среди расстояний от конца вектора до подпространства Ортогональная проекция вектора на подпространство всегда существует, для её построения достаточно применить метод ортогонализации Грама — Шмидта к объединению ортонормированного базиса в подпространстве и этого вектора. Ортогональные проекции в пространствах больших размерностей используются, например, в методе наименьших квадратов.
Любой вектор евклидова пространства задаёт линейный функционал на этом пространстве, определяемый как Это сопоставление является изоморфизмом между евклидовым пространством и двойственным к нему пространством[4] и позволяет их отождествлять без ущерба для вычислений. В частности, сопряжённые операторы можно рассматривать как действующие на исходном пространстве, а не на двойственном к нему, и определить самосопряжённые операторы как операторы, совпадающие с сопряжёнными к ним. В ортонормированном базисе матрица сопряжённого оператора является транспонированной к матрице исходного оператора, а матрица самосопряжённого оператора является симметричной.
Движения евклидова пространства — это преобразования, сохраняющие метрику (также называются изометриями). Пример движения — параллельный перенос на вектор переводящий точку в точку Нетрудно увидеть, что любое движение является композицией параллельного переноса и преобразования, сохраняющего неподвижной одну точку. Выбрав неподвижную точку за начало координат, любое такое движение можно рассматривать как ортогональное преобразование. Ортогональные преобразования n-мерного евклидова пространства образуют группу, обозначаемую O(n). Выбрав в пространстве ортонормированный базис, эту группу можно представить как группу матриц n×n, удовлетворяющих условию где — транспонированная матрица, а — единичная матрица.
Наглядными примерами евклидовых пространств могут служить пространства:
Более абстрактный пример:
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |