Евклидово пространство

Евкли́дово простра́нство (также эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространстоллллллллллолво с введённым на нём положительно определённым скалярным произведением, либо метрическое пространство, соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

-мерное евклидово пространство обозначается также часто используется обозначение (если из контекста ясно, что пространство обладает евклидовой структурой).

Формальное определение

Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения. Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел, на векторах которого задана вещественнозначная функция   обладающая следующими тремя свойствами:

  • Билинейность: для любых векторов   и для любых вещественных чисел   и  
  • Симметричность: для любых векторов  
  • Положительная определённость: для любого   причём  

Аффинное пространство, соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством[1].

Пример евклидова пространства — координатное пространство   состоящее из всевозможных кортежей вещественных чисел   скалярное произведение в котором определяется формулой  

Длины и углы

Заданного на евклидовом пространстве скалярного произведения достаточно для того, чтобы ввести геометрические понятия длины и угла. Длина вектора   определяется как   и обозначается  [2][3] Положительная определённость скалярного произведения гарантирует, что длина ненулевого вектора ненулевая, а из билинейности следует, что   то есть длины пропорциональных векторов пропорциональны.

Угол между векторами   и   определяется по формуле   Из теоремы косинусов следует, что для двумерного евклидова пространства (евклидовой плоскости) данное определение угла совпадает с обычным. Ортогональные векторы, как и в трёхмерном пространстве, можно определить как векторы, угол между которыми равен  

Неравенство Коши — Буняковского — Шварца и неравенство треугольника

В данном выше определении угла остался один пробел: для того, чтобы   был определён, необходимо, чтобы выполнялось неравенство   Это неравенство действительно выполняется в произвольном евклидовом пространстве, оно называется неравенством Коши — Буняковского — Шварца. Из этого неравенства, в свою очередь, следует неравенство треугольника:   Неравенство треугольника, вместе с перечисленными выше свойствами длины, означает, что длина вектора является нормой на евклидовом векторном пространстве, а функция   задаёт на евклидовом пространстве структуру метрического пространства (эта функция называется евклидовой метрикой). В частности, расстояние между элементами (точками)   и   координатного пространства   задаётся формулой  

Алгебраические свойства

Ортонормированные базисы

Ортонормированный базис в евклидовом (векторном) пространстве — это базис, состоящий из попарно ортогональных векторов единичной нормы. Ортонормированные базисы наиболее удобны для вычислений. Так, например, скалярное произведение векторов с координатами   и   в ортонормированном базисе можно вычислять по формуле   В любом евклидовом пространстве существует ортонормированный базис. Выбрав в двух евклидовых пространствах ортонормированные базисы и переведя один из них в другой линейным отображением, можно доказать, что любые два евклидовых пространства одинаковой размерности изоморфны (в частности,  -мерное евклидово пространство изоморфно   со стандартным скалярным произведением).

Ортогональные проекции

Вектор называется ортогональным подпространству, если он ортогонален всем векторам этого подпространства. Ортогональная проекция вектора   на подпространство   — это вектор   ортогональный   такой что   представим в виде   где   Расстояние между концами векторов   и   является минимальным расстоянием среди расстояний от конца вектора   до подпространства   Ортогональная проекция вектора на подпространство всегда существует, для её построения достаточно применить метод ортогонализации Грама — Шмидта к объединению ортонормированного базиса в подпространстве и этого вектора. Ортогональные проекции в пространствах больших размерностей используются, например, в методе наименьших квадратов.

Сопряжённые пространства и операторы

Любой вектор   евклидова пространства задаёт линейный функционал   на этом пространстве, определяемый как   Это сопоставление является изоморфизмом между евклидовым пространством и двойственным к нему пространством[4] и позволяет их отождествлять без ущерба для вычислений. В частности, сопряжённые операторы можно рассматривать как действующие на исходном пространстве, а не на двойственном к нему, и определить самосопряжённые операторы как операторы, совпадающие с сопряжёнными к ним. В ортонормированном базисе матрица сопряжённого оператора является транспонированной к матрице исходного оператора, а матрица самосопряжённого оператора является симметричной.

Движения евклидова пространства

Движения евклидова пространства — это преобразования, сохраняющие метрику (также называются изометриями). Пример движения — параллельный перенос на вектор   переводящий точку   в точку   Нетрудно увидеть, что любое движение является композицией параллельного переноса и преобразования, сохраняющего неподвижной одну точку. Выбрав неподвижную точку за начало координат, любое такое движение можно рассматривать как ортогональное преобразование. Ортогональные преобразования n-мерного евклидова пространства образуют группу, обозначаемую O(n). Выбрав в пространстве ортонормированный базис, эту группу можно представить как группу матриц n×n, удовлетворяющих условию   где   — транспонированная матрица, а   — единичная матрица.

Примеры

Наглядными примерами евклидовых пространств могут служить пространства:

  •   размерности   (вещественная прямая)
  •   размерности   (евклидова плоскость)
  •   размерности   (евклидово трехмерное пространство)

Более абстрактный пример:

  • пространство вещественных многочленов   степени, не превосходящей  , со скалярным произведением, определенным как интеграл произведения по конечному отрезку (или по всей прямой, но с быстро спадающей весовой функцией, например  ).

Примеры геометрических фигур в многомерном евклидовом пространстве

Связанные определения

  • Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика.
  • Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.
  • Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) — каковым, например, является риманово многообразие нулевой кривизны.

Вариации и обобщения

Примечания

  1. Гельфанд, 1998, с. 35.
  2. Гельфанд, 1998, с. 39.
  3. Кострикин, Манин, 1986, с. 118.
  4. Данный результат верен также для псевдоевклидовых и унитарных пространств, для гильбертовых пространств он более сложен и называется теоремой Рисса.

Литература