Пусть — вещественнозначная функция, заданная на отрезке . Эту функцию называют бесконечно дифференцируемой на интервале , если
для любого и любого . Таким образом, локально, в окрестности любой точки отрезка, функция сколь угодно хорошо приближается многочленом. Гладкие на отрезке функции образуют кольцо гладких функций .
Коэффициенты
Эти функции называют производными функции . Первая производная может быть вычислена как предел
.
Оператор, сопоставляющий функции её производную обозначают как
При этом для двух гладких функций f и g верно
и
Оператор, обладающий указанными свойствами, называют дифференцированием кольца гладких функций.
Всякая аналитическая функция, голоморфная на отрезке , является гладкой функцией, но обратное неверно. Главное различие аналитических и гладких функций состоит в том, что первые полностью определяются своим поведением в окрестности одной точки, вторые — нет. Напр., гладкая функция может быть равна постоянной в окрестности одной точки, но не быть постоянной всюду. Элементарные функции в своей (открытой) области определения являются аналитическими, а, следовательно, и гладкими функциями. Однако, в отличие от аналитических функций, гладкие функции могут быть заданы на разных интервалах разными элементарными выражениями.
Касательная прямая
График функции (чёрная кривая) и касательная прямая (красная прямая)
при условии всё время остаётся одним и тем же, поэтому кривая
лежит по одну сторону от прямой
Прямую, обладающую указанным свойством, называют касательной к кривой в точке (по Б. Кавальери). Точку , в которой кривая
не лежит по одну сторону от прямой
называют точкой перегиба, при этом прямую все равно именуют касательной. Для единообразия часто само понятие касательной вводят иначе с тем, чтобы оба случая подпадали под него.
для всех достаточно малых по модулю . Из соотношения
сразу видно, что — необходимое условие максимума, а — достаточное условие максимума. Условие выделяет точки максимума, минимума и перегиба.
Непрерывные функции
Пусть определена и на концах интервала ; говорят, что она непрерывна на , если для любого найдётся такое , что
, лишь только
и точки не выходят за границы интервала .
Теорема Вейерштрасса утверждает, что гладкая на отрезке функция достигает на отрезке своего минимального и максимального значений. Понятие непрерывности функции обычно увязывается с понятием предела функции. Непрерывны на интервале функции образуют кольцо непрерывных функций .
Основные теоремы дифференциального исчисления
Кольцо непрерывных на и гладких на функций обладает рядом важных свойств:
Теорема Ролля: если , то имеется точка максимума или минимума, в которой обращается в нуль.
Теорема Коши: если на , то существует такая точка Невозможно разобрать выражение (SVG с запасным PNG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): c\in (a,b)
, что
Из теоремы Лагранжа выводят формулу Тейлора с остаточным членом в форме Лагранжа: на любом отрезке найдутся такие точки , что
где
При помощи этой формулы можно приближённо вычислять значения функции в точке по известным значениям функции и её производных в точке .