Дифференциальные формы были введены Эли Картаном в начале XX века.
Формализм дифференциальных форм оказывается удобен во многих разделах теоретической физики и математики, в частности, в теоретической механике, симплектической геометрии, квантовой теории поля.
Пространство -форм на многообразии обычно обозначают .
значение -формы на наборе из штук касательных векторных полей есть функция на многообразии.
значение -формы в точке многообразия есть кососимметрический -линейный функционал на .
Через локальные карты
-формой на будем называть выражение следующего вида
где — гладкие функции, — дифференциал-ой координаты (функция от вектора, возвращающая его координату с номером ), а — внешнее произведение.
При смене координат это представление меняет форму.
На гладком многообразии, k-формы могут быть определены как формы на картах, которые согласованы на склейках (для точного определения согласованности см. многообразие).
Связанные определения
Для -формы , её внешний дифференциал (также просто дифференциал) это -форма, в координатах имеющая вид
для инвариантного определения дифференциала нужно определить дифференциал функций, то есть -форм, затем дифференциал -форм, после чего на произвольные формы дифференциал продолжается по -линейности и градуированному правилу Лейбница:
— значение дифференциала -формы на паре векторных полей есть разность производных значений формы на одном поле вдоль другого, подправленная на коммутатор.
Дифференциальная форма называется замкнутой, если её внешняя производная равна 0.
k-форма называется точной, если её можно представить как дифференциал некоторой (k-1)-формы.
Факторгруппа замкнутых k-форм по точным k-формам называется -мерной группой когомологий де Рама. Теорема де Рама утверждает, что она изоморфна k-мерной группе сингулярных когомологий.
Внутренней производной формы по векторному полю называется форма
Свойства
Для дифференциалов форм векторного поля справедливо:
Дифференциальную форму можно рассматривать как поле полилинейных кососимметрических функций от векторов.
Внешнее дифференцирование линейно и удовлетворяет градуированному правилу Лейбница:
Для любой формы справедливо .
Примеры
С точки зрения тензорного анализа, 1-форма есть не что иное как ковекторное поле, то есть 1 раз ковариантный тензор, заданный в каждой точке многообразия и отображающий элементы касательного пространства в множество вещественных чисел :
Форма объёма — пример -формы на -мерном многообразии.
Через дифференциальные формы возможно представить основные операторы в векторном анализе
Пусть — канонический изоморфизм между касательным и кокасательным пространствами, и — канонический изоморфизм между 2-формами и векторными полями на . Благодаря этому можно определить дифференциальные операции с векторными полями на .
Тогда ротор и дивергенцию для полей на можно представить как
Максвелловская электродинамика весьма изящно формулируется на языке дифференциальных форм. Рассмотрим 2-форму Фарадея, соответствующую тензору электромагнитного поля:
Эта форма является формой кривизны тривиального главного расслоения со структурной группой U(1), с помощью которого могут быть описаны классическая электродинамика и калибровочная теория. 3-форма тока имеет вид
В этих обозначениях уравнения Максвелла могут быть очень компактно записаны как
где — оператор звезды Ходжа. Подобным образом может быть описана геометрия общей калибровочной теории.
С помощью дифференциальных форм можно сформулировать гамильтонову механику чисто геометрически. Рассмотрим симплектическое многообразие с заданными на нём симплектической формой и функцией , называемой функцией Гамильтона. задаёт в каждой точке изоморфизм кокасательного и касательного пространств по правилу
,
где — дифференциал функции . Векторное поле на многообразии называется гамильтоновым полем, а соответствующий ему фазовый поток — гамильтоновым потоком. Гамильтонов фазовый поток сохраняет симплектическую форму, а следовательно, сохраняет и любую её внешнюю степень. Отсюда следует теорема Лиувилля. Скобка Пуассона функций и на определяется по правилу
Вариации и обобщения
Помимо вещественно- и комплекснозначных форм, часто также рассматриваются дифференциальные формы со значениями в векторных расслоениях. В этом случае в каждой точке задается полилинейная антисимметричная функция от векторов из касательного расслоения, возвращающая вектор из слоя над этой точкой. Формально внешние k-формы на со значениями в векторном расслоении определяются как сечения тензорного произведения расслоений
Частный случай векторнозначных дифференциальных форм — тангенциальнозначные формы, в определении которых в качестве векторного расслоения берётся касательное расслоение .
Литература
Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М.: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5.
Годбийон К. Дифференциальная геометрия и аналитическая механика. — М.: Мир, 1971.
Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. Методы и приложения. — М.: Наука, 1971.
Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971.
Постников М. М. Лекции по геометрии. Семестр III. Гладкие многообразия. — М.: Наука, 1987.
Булдырев В. С., Павлов Б. С. Линейная алгебра и функции многих переменных. — Л.: Издательство Ленинградского университете, 1985.