Динамическая система — математическая абстракция, предназначенная для описания и изучения эволюции систем во времени.
Динамическая система представляет собой математическую модель некоторого объекта, процесса или явления.
Динамическая система также может быть представлена как система, обладающая состоянием. При таком подходе, динамическая система описывает (в целом) динамику некоторого процесса, а именно: процесс перехода системы из одного состояния в другое. Фазовое пространство системы — совокупность всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, по которому система переходит из начального состояния в другое.
Различают системы с дискретным временем и системы с непрерывным временем.
В системах с дискретным временем, которые традиционно называются каскадами, поведение системы (или, что то же самое, траектория системы в фазовом пространстве) описывается последовательностью состояний. В системах с непрерывным временем, которые традиционно называются потоками, состояние системы определено для каждого момента времени на вещественной или комплексной оси. Каскады и потоки являются основным предметом рассмотрения в символической и топологической динамике.
Динамическая система (как с дискретным, так и с непрерывным временем) часто описывается автономной системой дифференциальных уравнений, заданной в некоторой области и удовлетворяющей там условиям теоремы существования и единственности решения дифференциального уравнения. Положениям равновесия динамической системы соответствуют особые точки дифференциального уравнения, а замкнутые фазовые кривые — его периодическим решениям.
Основное содержание теории динамических систем — это исследование кривых, определяемых дифференциальными уравнениями. Сюда входит разбиение фазового пространства на траектории и исследование предельного поведения этих траекторий: поиск и классификация положений равновесия, выделение притягивающих (аттракторы) и отталкивающих (репеллеры) множеств (многообразий). Важнейшие понятия теории динамических систем — устойчивость (способность системы сколь угодно долго оставаться около положения равновесия или на заданном многообразии) и грубость (сохранение свойств при малых изменениях структуры динамической системы; «грубая система — это такая, качественный характер движений которой не меняется при достаточно малом изменении параметров»[1]).
Привлечение вероятностно-статистических представлений в эргодической теории динамических систем приводит к понятию динамической системы с инвариантной мерой.
Современная теория динамических систем является собирательным названием для исследований, где широко используются и эффективным образом сочетаются методы из различных разделов математики: топологии и алгебры, алгебраической геометрии и теории меры, теории дифференциальных форм, теории особенностей и катастроф.
Весьма тесно примыкает к таким современным разделам естествознания как неравновесная термодинамика, теория динамического хаоса, синергетика.
Пусть — произвольное гладкое многообразие.
Динамической системой, заданной на гладком многообразии , называется отображение , записываемое в параметрическом виде , где , которое является дифференцируемым отображением, причём — тождественное отображение пространства . В случае стационарных обратимых систем однопараметрическое семейство образует группу преобразований топологического пространства , а значит, в частности, для любых выполняется тождество .
Из дифференцируемости отображения следует, что функция является дифференцируемой функцией времени, её график расположен в расширенном фазовом пространстве и называется интегральной траекторией (кривой) динамической системы. Его проекция на пространство , которое носит название фазового пространства, называется фазовой траекторией (кривой) динамической системы.
Задание стационарной динамической системы эквивалентно разбиению фазового пространства на фазовые траектории. Задание динамической системы в общем случае эквивалентно разбиению расширенного фазового пространства на интегральные траектории.
Для задания динамической системы необходимо описать её фазовое пространство , множество моментов времени и некоторое правило, описывающее движение точек фазового пространства со временем. Множество моментов времени может быть как интервалом вещественной прямой (тогда говорят, что время непрерывно), так и множеством целых или натуральных чисел (дискретное время). Во втором случае «движение» точки фазового пространства больше напоминает мгновенные «скачки» из одной точки в другую: траектория такой системы является не гладкой кривой, а просто множеством точек, и называется обычно орбитой. Тем не менее, несмотря на внешнее различие, между системами с непрерывным и дискретным временем имеется тесная связь: многие свойства являются общими для этих классов систем или легко переносятся с одного на другой.
Пусть фазовое пространство представляет собой многомерное пространство или область в нем, а время непрерывно. Допустим, что нам известно, с какой скоростью движется каждая точка фазового пространства. Иными словами, известна вектор-функция скорости . Тогда траектория точки будет решением автономного дифференциального уравнения с начальным условием . Заданная таким образом динамическая система называется фазовым потоком для автономного дифференциального уравнения.
Пусть — произвольное множество, и — некоторое отображение множества на себя. Рассмотрим итерации этого отображения, то есть результаты его многократного применения к точкам фазового пространства. Они задают динамическую систему с фазовым пространством и множеством моментов времени . Действительно, будем считать, что произвольная точка за время переходит в точку . Тогда за время эта точка перейдет в точку и т. д.
Если отображение обратимо, можно определить и обратные итерации: , и т. д. Тем самым получаем систему с множеством моментов времени .
задает динамическую систему с непрерывным временем, называемую «гармоническим осциллятором». Её фазовым пространством является плоскость , где — скорость точки . Гармонический осциллятор моделирует разнообразные колебательные процессы — например, поведение груза на пружине. Его фазовыми кривыми являются эллипсы с центром в нуле.
Имея какое-то задание динамической системы, далеко не всегда можно найти и описать ее траектории в явном виде. Поэтому обычно рассматриваются более простые (но не менее содержательные) вопросы об общем поведении системы. Например:
Для улучшения этой статьи желательно: |
Это статья-заготовка по математике. Помогите Википедии, дополнив эту статью, как и любую другую. |