График функции — понятие в математике, которое даёт представление о геометрическом образе функции.
Наиболее наглядны графики вещественнозначных функций вещественного переменного.
В этом случае, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:
Таким образом, функция может быть адекватно описана своим графиком.
Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции: никакая прямая, параллельная оси ординат, не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и тоже подмножество плоскости).
График гладкой (требуемое количество раз дифференцируемой функции) является плоской кривой той же степени гладкости.
При рассмотрении отображения произвольного вида , действующего из множества в множество , графиком функции называется следующее множество упорядоченных пар:
В частности, при рассмотрении динамических систем, изображающая точка
представляет собою график решения соответствующего дифференциального уравнения.