Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом, определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно-однозначным отображением (соответствием), одно-однозначным отображением.
Биективная функция.
Если между двумя множествами можно установить взаимно-однозначное соответствие (биекция), то такие множества называются равномощными. С точки зрения теории множеств, равномощные множества неразличимы.
Функция является биективной тогда и только тогда, когда существует обратная функция такая, что
и
Если функции и биективны, то и композиция функций биективна, в этом случае . Коротко: композиция биекций является биекцией. Обратное, однако, неверно: если биективна, то мы можем утверждать лишь, что инъективна, а сюръективна.
Н. К. Верещагин, А. Шень.Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 с.
Ершов Ю. Л., Палютин Е. А. . Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб.: Лань, 2004. — 336 с.