А́лгебра Ли — объект абстрактной алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Названа по имени норвежского математика Софуса Ли (1842—1899).
Алгеброй Ли (иначе лиевой алгеброй) называется векторное пространство над полем , снабжённое билинейным отображением
удовлетворяющим следующим двум аксиомам:
Другими словами, в алгебре Ли задана антикоммутативная операция, удовлетворяющая тождеству Якоби. Эта операция называется коммутатор или скобка Ли.
Обычное трёхмерное векторное пространство является алгеброй Ли относительно операции векторного произведения.
Если — конечномерное векторное пространство над ( ), то множество его линейных преобразований — также векторное пространство над . Оно имеет размерность и может быть представлено как пространство матриц . В этом векторном пространстве задана естественная операция умножения (композиция преобразований). Определим операцию скобки Ли формулой . Пространство с так введённой скобкой Ли удовлетворяет всем аксиомам алгебры Ли.
Чтобы отличать получившуюся алгебру Ли от изначальной ассоциативной алгебры линейных преобразований, её обозначают . Эта алгебра Ли называется полной линейной алгеброй. В случае бесконечномерного пространства V также используется обозначение . Любая подалгебра в называется линейной алгеброй Ли
Пусть — произвольная ассоциативная алгебра над с умножением: → . Она обладает естественной структурой алгебры Ли над , если определить скобку Ли через ассоциативное умножение по формуле: , это выражение называется коммутатором. Заметим, что обратное утверждение неверно: скобка Ли в общем случае не позволяет ввести ассоциативное умножение, поэтому не всякая алгебра Ли является в то же время ассоциативной алгеброй.
Если M — гладкое многообразие, пространство всех заданных на нем дифференцируемых векторных полей образует бесконечномерную алгебру Ли. Операция, превращающая векторные поля в алгебру Ли, может быть описана несколькими эквивавлентными способами:
где, как обычно, подразумевается суммирование по повторяющемуся индексу j и
,
частные производные от функций вдоль направлений tj.
где X, Y — векторные поля, а — ковариантная производная по направлению векторного поля X. Эквивалентность с определениями данными выше показывает, что результат на самом деле не зависит от выбора метрики.
Тождество Якоби для алгебры векторных полей можно переписать как правило Лейбница для производной Ли:
Замечание: группу диффеоморфизмов многообразия следует неформально считать «группой Ли» для алгебры Ли векторных полей на многообразии. Хотя в бесконечномерном случае, соответствие между группами и алгебрами Ли не носит формального характера, тем не менее многие свойства могут быть легко обобщены, (хотя некоторые перестают быть верными).
Дифференцированием в алгебре называется линейное отображение , удовлетворяющее правилу Лейбница дифференцирования произведения . Совокупность всех дифференцирований является векторным подпространством в . Коммутатор двух дифференцирований снова является дифференцированием, поэтому — подалгебра в .
Наряду с дифференцированиями произвольных алгебр можно рассматривать частный случай дифференцирования алгебры Ли . В алгебрах Ли некоторые дифференцирования возникают естественным способом. Присоединёнными эндоморфизмами называются дифференцирования лиевой алгебры вида . Такие дифференцирования называются внутренними , остальные — внешними. Отображение называется присоединённым представлением алгебры Ли.
Внутренние дифференцирования образуют в подалгебру , изоморфную факторалгебре алгебры по её центру .