Алгебраическая кривая или плоская алгебраическая кривая— это геометрическое место (множество) точек на плоскости (O;x,y), которое определяется как множество нулей многочлена от двух переменных. Степенью (или порядком) n этой кривой называется степень этого многочлена. Алгебраические кривые степеней n = 1, 2, 3, ... , 8 кратко называются прямыми, кониками, куби́ками, квартиками, пентиками, секстиками, септиками, октиками соответственно. Например, единичная окружность — это алгебраическая кривая степени 2 (коника), так как она задаётся уравнением x2 + y2 − 1 = 0.
По многим техническим причинам удобно рассматривать не только вещественные, но и комплексные корни соответствующего многочлена, а также обобщить определение на случай произвольного основного поля.
В алгебраической геометрии, плоская аффинная алгебраическая кривая над полем k определяется как множество точек K2, являющихся корнями многочлена от двух переменных с коэффицентами в k, где K — алгебраическое замыкание поля k. Точки этой кривой, все координаты которых лежат в k, называются k-точками. Например, точка принадлежит рассмотренной выше единичной окружности, однако не принадлежит её действительной части. Многочлен x2 + y2 + 1 задаёт алгебраическую кривую, действительная часть которой пуста.
Более общо, можно рассматривать алгебраические кривые, содержащиеся не в плоскости, а в пространстве с большим числом измерений или в проективном пространстве. Оказывается, что многие свойства алгебраической кривой не зависят от выбора конкретного вложения в некоторое пространство, и это приводит к общему определению алгебраической кривой:
Алгебраическая кривая — это алгебраическое многообразие размерности 1. Это определение можно переформулировать так: алгебраическая кривая — это алгебраическое многообразие, все алгебраические подмногообразия которого состоят из одной точки.
Рациональная кривая, также известная как уникурсальная кривая, — это кривая, бирационально эквивалентная аффинной прямой (или проективной прямой?!), другими словами, кривая, допускающая рациональную параметризацию.
Более конкретно, рациональная кривая в n-мерном пространстве может быть параметризована (за исключением некоторого числа изолированных «особых точек») при помощи n рациональных функций от единственного параметра t.
Любое коническое сечение над полем рациональных чисел, содержащее хотя бы одну рациональную точку, является рациональной кривой.[1] Её можно параметризовать, проведя через рациональную точку прямую с произвольным угловым коэффициентом t и сопоставив данному t вторую точку пересечения прямой и коники (их не может быть больше двух).
Например, рассмотрим эллипс x2 + xy + y2 = 1 с рациональной точкой (−1, 0). Проведя через неё прямую y = t(x + 1), подставив выражение y через x в уравнение и решив относительно x, получим уравнения
задающие рациональную параметризацию эллипса. В таком виде представимы все точки эллипса кроме точки (−1, 0), можно сопоставить ей t = ∞, то есть параметризовать эллипс проективной прямой.
Эту рациональную параметризацию можно рассматривать как параметризацию «эллипса в проективном пространстве», перейдя к однородным координатам, то есть заменив t на T/U, а x, y — на X/Z, Y/Z соответственно. Параметризация эллипса X2 + XY + Y2 = Z2 проективной прямой примет следующий вид:
Рациональные кривые (над алгебраически замкнутым полем) — это в точности алгебраические кривые рода 0 (см. ниже), в этой терминологии эллиптические кривые — это кривые рода 1 с рациональной точкой. Любая такая кривая может быть представлена как куби́ка без особенностей.
Эллиптическая кривая несёт на себе структуру абелевой группы. Сумма трёх точек на куби́ке равна нулю тогда и только тогда, когда эти точки коллинеарны.
Пересечение двух коник является кривой четвёртого порядка рода 1, а значит, эллиптической кривой, если содержит хотя бы одну рациональную точку. В противном случае пересечение может быть рациональной кривой четвёртого порядка с особеннностями, или быть разложимым на кривые меньшего порядка (кубика и прямая, две коники, коника и две прямые или четыре прямые).
Изучение алгебраических кривых может быть сведено к изучению неприводимых кривых (то есть не раскладывающихся в объединение двух меньших кривых). Каждой такой кривой можно сопоставить поле рациональных функций на ней; оказывается, что кривые бирационально эквивалентны тогда и только тогда, когда их поля функций изоморфны. Это значит, что категория алгебраических кривых и рациональных отображений двойственна категории одномерных полей алгебраических функций, то есть полей, являющихся алгебраическими расширениями поля .
Комплексная алгебраическая кривая, вложенная в аффинное или проективное пространство, имеет топологическую размерность 2, другими словами, является поверхностью. В частности, комплексная алгебраическая кривая без особенностей является двумерным ориентируемым многообразием.
Топологический род этой поверхности совпадает с родом алгебраической кривой (который можно вычислить алгебраическими способами). Если проекция кривой без особенностей на плоскость является алгебраической кривой степени d с простейшими особенностями (обыкновенными двойными точками), то исходная кривая имеет род (d − 1)(d − 2)/2 − k, где k — число этих особенностей.
Изучение компактных римановых поверхностей состоит фактически в изучении комплексных алгебраических кривых без особенностей, рассматриваемых как поверхности с дополнительной аналитической структурой. Более точно, следующие категории эквивалентны:
Особые точки включают в себя несколько типов точек, в которых кривая «пересекает сама себя», а также различные типы каспов. Например, на рисунке показана кривая x3 − y2 = 0 с каспом в начале координат.
Особые точки можно классифицировать по их инвариантам. Например, особую точку с дельта-инвариантом δ можно интуитивно описать как точку, в которой встречаются сразу δ «самопересечений». В случае точки P на неприводимой кривой δ можно вычислить как длину модуля , где — локальное кольцо в точке P и — его целое замыкание. Вычисление дельта-инвариантов всех особых точек позволяет вычислить род кривой по формуле:
Другие важные инварианты: кратность m особенности (максимальное целое число, такое что все производные задающего кривую многочлена, порядок которых не превосходит m, равны нулю) и число Милнора .