Абелева или коммутативная группа есть группа, в которой групповая операция является коммутативной; то есть группа абелева если для любых двух элементов .
Групповушная операция в абелевых группах обычно называется «сложением» и обозначается знаком .
Название дано в честь норвежского математика Абеля за его вклад в исследование групп подстановок.
Основополагающая теорема о структуре конечной абелевой группы утверждает, что любая конечная абелева группа может быть разложена в прямую сумму своих циклических подгрупп, порядки которых являются степенями простых чисел. Это следствие общей теоремы о структуре конечнопорождённых абелевых групп для случая, когда группа не имеет элементов бесконечного порядка. изоморфно прямой сумме и тогда и только тогда, когда и взаимно просты.
Следовательно, можно записать абелеву группу в форме прямой суммы
двумя различными способами:
Например, может быть разложено в прямую сумму двух циклических подгрупп порядков 3 и 5: . То же можно сказать про любую абелеву группу порядка пятнадцать, приходим к выводу, что все абелевы группы порядка 15 изоморфны.
Это статья-заготовка по алгебре. Помогите Википедии, дополнив эту статью, как и любую другую. |